

City of Parksville

Transportation Master

Plan – Base Conditions

Assessment

January 24, 2024

Submitted to: City of Parksville Prepared by McElhanney

Contact
Matthew Browning, P.Eng.,
Project Manager
236-317-3077
mbrowning@mcelhanney.com

Address 1211 Ryan Road, Courtenay BC Canada V9N 3R6

Our file: 2121-01065-00

Your Challenge. Our Passion.

Our File: 2121-01065-00

January 24, 2024

City of Parksville 100 Jensen Avenue East (PO Box 1390) Parksville, BC, V9P 2H3

Attention: Scott Stevens, EIT

City of Parksville Transportation Master Plan

Base Conditions Assessment Report

The following report has been prepared to collate and summarize the work conducted during Phase 1 of the City of Parksville Transportation Master Plan study. The intention of this document is to act as a baseline for deriving the recommendations that will be presented in the Transportation Master Plan, as determined through technical analysis, industry best-practice, community and interested party engagement and collaboration with the City.

The work is based on the data available at the time of preparation, including the field surveys undertaken for traffic and parking, City GIS base layers, site visit observations, related studies, community feedback and insight from City staff. Following the acceptance of this document into the record, we can move forward with developing options and strategies that meet the aspirational goals of the community and respond to forecast future demands that Parksville will face.

S	houl	d	you	have	any	quest	ions (or (comment	S, 1	olease i	conta	act t	the	und	ersi	gned	

Sincerely,

Prepared by:

Reviewed by:

Matthew Browning, P.Eng.,Elaine Lau, P.Eng., PTOEProject ManagerTMP Advisormbrowning@mcelhanney.comEKLau@mcelhanney.com236-317-3077780-809-3234

Contents

Exe	cutive Summary	<i>'</i>
1.	Introduction	
1.1.	Project Overview	!
1.2.	Study Process	
1.3.	Engagement	
2.	Community Profile	
2.1.	Demographics	
2.2.	Land use in the regional context	
2.3.	Strategic planning framework	
3.	Previous Relevant Studies	
3.1.	Regional Plans	
3.2.	City-wide Strategies and Plans	
4.	Existing Travel Market and Influences	
 4.1.	Mode share and Travel Characteristics	
5.	Active Mobility	
	•	
5.1.	Pedestrian inventory and Assessment	
5.2.	Cycling Inventory and Assessment	
6.	Transit	
6.1.	Operating Context	
6.2.	Transit inventory and Assessment (service, facilities, frequencies, ridership, coverage)	
7.	Auto and Parking	
7.1.	Road inventory and Assessment (classification system, Cross-sections)	
7.2.	Traffic operations	
7.3.	Truck and Emergency Routes	
7.4.	Downtown Parking Inventory	
8.	Community Engagement #1 – Issues, Opportunities, aspirations	27
8.1.	Summary	27
9.	Summary of Issues and Opportunities	29
9.1.	Issues and Opportunities	29
9.2.	Next Steps	3
App	endix A	<i>'</i>

Executive Summary

INTRODUCTION

The City of Parksville is developing a comprehensive Transportation Master Plan (TMP) that engages the community's needs and expectations, and communicates recommendations including costs, impacts, and policy direction along with an implementation plan that includes monitoring and expected outcomes. The TMP study process is broken down into three discrete phases that provide a clear and transparent approach to: 1) identify issues and opportunities, 2) explore potential solutions, and 3) recommend approaches and interventions. The Phase 1 base conditions work to identify issues and opportunities has been organized into nine sections, as summarized below:

- 1. Study Purpose and Overview
- 2. Community Profile
- 3. Previous Relevant Studies
- 4. Existing Travel Market and Influences
- 5. Active Mobility
- 6. Transit
- 7. Auto and Parking
- 8. Community Engagement #1 Issues, opportunities, and aspirations
- 9. Summary of Issues and Opportunities

Ultimately, the purpose of the base conditions assessment is to understand current transportation infrastructure and operational conditions and identify areas for improvement and enhancement.

Background Context

The City's population at the 2021 census was 13,642 and the area has experienced a growth rate of approximately 1.8% annually since 2016 (equating to a 9.5% increase between 2016 and 2021) and is anticipated to continue to grow with various infill developments either underway or proposed.

The nature of Parksville's development as a low-density community has led to an auto-dominated travel market that exists to this day. This is evidenced by the recent (2021) StatsCan data that indicates that 86% of the employed population travels to work by private automobile (either as a driver or passenger).

Multi-Modal Transportation Network

The transportation network in and around Parksville is generally geared towards facilitating travel by private automobile. The nearby Highway 19 provides a fast and efficient connection to the nearby cities of Courtenay and Nanaimo as well as the rest of the island, and Highway 4A is the key route across to the western communities of Port Alberni and Tofino. The city is bisected by Highway 19A, the Island Highway, which provides a more scenic, alternative route for regional travel as well as a direct connection into and out of the city. Within the town, a network of collector-style roads provides easy navigation and access to all neighbourhoods and free parking is readily available in most commercial areas.

Most streets and roads within the downtown area provide sidewalks on either side of the roadway, as do many of the major collector corridors that connect the downtown to the broader urban area. Many of these sidewalks are in need of refurbishment and community feedback has indicated that the design of sidewalks can often present challenges for users of mobility devices. The pedestrian experience along the Highway 19A corridor is mixed, with many areas along the corridor benefiting from an intermittent tree canopy and views towards to the ocean. However, in a majority of areas, the sidewalks can be narrow, with little buffer between pedestrians and fast-moving traffic on the roadway. Crossing opportunities are spread out and not always aligned with key destinations on the beach-side of the highway. Between McVickers Street and Shelly Road (approx. 700m) there is no formal crossing infrastructure, resulting in reported instances of jaywalking across the five lanes of highway traffic.

Some roads have designated, painted bike lanes or wide shoulders, while others may require cyclists to share the road with vehicles. The level of cycling infrastructure on local roads varies, but the routes are generally flat and are mostly suitable for cyclists of strong abilities who can share the lane with general traffic. There are limited push buttons to cross major intersections and the discontinuous nature of existing infrastructure – which is mainly limited to paint, rather than separation - prevents the cycling network from being accessible for all ages and abilities.

A review of the traffic conditions in Parksville was completed to identify intersections in the downtown core that currently experience significant delays and/or capacity constraints. All intersections in the study area perform at Level of Service (LOS) C or better for both AM and PM peak hours [definitions for Level of Service standards are provided in Section 7.1]. There are a few movements that perform at LOS D, mainly left turns that have high volumes and short signal time phases. The northbound-left (NBL) and northbound-right (NBR) movements at Bagshaw St perform at LOS E which signifies significant delays. The intersection of Bagshaw St and Highway 19A is stop controlled for the northbound (NB) movement which has a lower capacity than a signalized intersection control. The traffic analysis also identified some queuing on Highway 19A for both the eastbound (EB) and westbound (WB) directions at the intersections of Corfield St and McCarter St.

The majority of the downtown area has public on-street parking with a 2-hour time limit. Alberni Highway has on-street parking with only a 1-hour time limit, and McMillan Street does not have on-street parking. There are few public parking lots in downtown Parksville, but several businesses have private parking lots. Most of the parking lots have at least one dedicated accessible parking space. There are few dedicated on-street accessible parking spaces, generally these are in front of medical practices.

Community feedback

An open house-style public engagement session was held in November 2023 to present the preliminary findings of the base conditions assessment and elicit feedback and input from the community regarding their issues, challenges and aspirations for mobility in the City. Some of the key themes that were repeatedly raised throughout the community engagement and are detailed here:

ACTIVE - Residents want a walkable downtown that is well-connected to key destinations around the City through a complete network of bike and pedestrian infrastructure. Specifically, connectivity to Rathtrevor Beach and the Parksville Community Park are very important.

BALANCED - While the City should be bike- and pedestrian-friendly, there is a need to provide access for drivers, deliveries, and emergency vehicles to the downtown core where parking should be conveniently located to support the business community. Changes to the Island Highway need to be balanced by travel opportunities on other corridors.

SAFE - The City should be a safe and pleasant environment to move through, with appropriate speed limits consistently enforced, improved lighting, protected and/or dedicated bike facilities, a comprehensive tree canopy, and enhanced crossing opportunities on busy corridors.

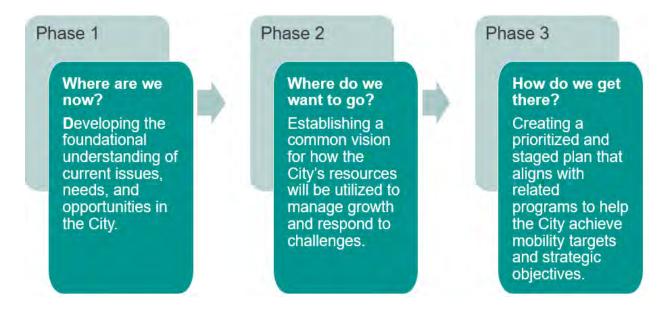
ACCESSIBLE – Parksville's median age (63.6) is notably higher than the BC average (43.1) and as such there are many residents with mobility challenges who utilize mobility scooters and other devices to get around. Design improvements need to be cognizant of this and provide infrastructure which is universally accessible.

Issues and Opportunities

The table below presents the key issues and opportunities identified by the technical analysis, an assessment of existing infrastructure, community feedback and discussions with City staff.

Issue	Discussion	Opportunities
Traffic Operations	 Traffic operations along the Island Highway are generally acceptable, with some congestion noted on specific, left- turn, movements. Crossing the Island Highway as a pedestrian can often be challenging, given the spacing of safe crossing points, the overall width of the roadway, and the priority given to vehicular traffic. There are limited east-west travel options aside from the Island Highway corridor. 	 Reduce the highway's effect as a barrier to pedestrian movement between the downtown and waterfront and reinvent the corridor as a street that better-serves the community. Explore the potential to create alternative corridors for cross-city movement

Lane Widths	 Some roadways are oversized for their current purpose with wide lanes encouraging higher speeds than those posted. 	 Review roadway design standards to move in a direction that prioritizes safety and accessibility.
Transit	 Transit coverage is good, but service frequencies and stop locations could be improved. 	 Collaborate with the Regional District of Nanaimo and BC Transit to find ways to improve and optimize transit service.
Active Mobility	The active mobility network is inconsistent and often disconnected with many high-demand areas under-served by the current infrastructure. Painted curb lines are often used as proxy bike lanes but are not designed to industry standard and do not provide adequate protection.	Focus on key corridors that would benefit from enhanced pedestrian and cycling infrastructure and update roadway design standards to encourage the adoption of this infrastructure. Identify gaps in the network to connect with formalized infrastructure, such as the walkway between Harnish Ave and Despard Ave.
Accessibility	 Accessibility is a challenge in many areas with identified barriers including misaligned curb cuts, street furniture, and long crossing distances. 	Review roadway design standards and policies regarding accessibility to be consistent with the goals of the Accessibility Plan.
Population Growth	The downtown core has seen many positive improvements in recent years, such as the pedestrian area of Memorial Avenue which enhances the walkability of the downtown. There are concerns that continued growth will undermine these efforts if not planned properly.	Identify areas to support walkability through urban design, transportation planning, and development requirements that encourage a 'complete community' approach.
Parking	Parking supply in the downtown is generally good, with a mix of on- and off-street parking provided to support businesses but, anecdotally, there is a tendency for visitors to drive to each new location within the city, even if the distance is walkable, out of convenience.	Explore strategies to encourage a 'park once' culture for both residents and visitors through physical location of parking, wayfinding, and other regulations.
Safety	The connection from Rathtrevor Beach and the resort area – a major destination for visitors – and the downtown is viewed as unsafe from an active mobility perspective.	Improve safety and mobility choice for this strategic connection.


1. Introduction

1.1. PROJECT OVERVIEW

The City of Parksville is developing a comprehensive Transportation Master Plan (TMP) that engages the community's needs, and expectations, and communicates recommendations including costs, impacts, and policy direction along with an implementation plan that includes monitoring and expected outcomes. The TMP will address current and future needs for all modes (auto, pedestrian, transit, cycling, and new and micro-mobility) along with emergency services and goods movement. The goal is to provide a safe and accessible transportation network that will support a high quality of life for residents, and efficient mobility for all.

1.2. STUDY PROCESS

The TMP study process is broken down into three discrete phases that provide a clear and transparent approach to identifying issues and opportunities, exploring potential solutions, and recommending approaches and interventions.

Each phase is underpinned by community engagement and ongoing dialogue and discussion with City staff and other interested parties.

The current phase of work is the base conditions assessment and analysis that forms Phase 1 - *Where Are We Now?* and provides the supporting evidence for the development of the Transportation Master Plan. While the TMP is intended to be readable as a standalone document that provides a framework for future transportation investment and interventions, many of the justifications for proposed works are derived from the challenges and opportunities identified during the base conditions assessment work. This background analysis provides an invaluable snapshot of how mobility is currently experienced in the City. The base conditions work is organized into nine sections, as summarized below:

- 1. Study Purpose and Overview
- 2. Community Profile
- 3. Previous Relevant Studies
- 4. Existing Travel Market and Influences
- 5. Active Mobility
- 6. Transit
- 7. Auto and Parking
- 8. Community Engagement #1 Issues, opportunities, and aspirations
- 9. Summary of Issues and Opportunities

Ultimately, the purpose of the base conditions assessment is to understand current transportation infrastructure and operational conditions and identify areas for improvement and enhancement.

1.3. ENGAGEMENT

The first step in creating a new TMP that enhances mobility in the community, for both residents and visitors, is understanding how transportation in the community works now. By listening to the feedback from the people who understand the City best – the public – we can create a TMP that works to address transportation challenges in a respectful and deliberate way.

The first round of public engagement for the project was crafted as a listening event where initial base mapping and existing conditions analysis can be presented to elicit transportation-specific feedback from the community on core topics. A What We Heard summary of this event has been generated to document that findings of the engagement session (see Appendix A).

2. Community Profile

The following section describes the status of demographics, land use and strategic planning in the City, to provide a context for the base conditions analysis and assessment.

2.1. DEMOGRAPHICS

The City of Parksville is a mid-sized municipality located on the east coast of Vancouver Island within the Regional District of Nanaimo. The City's population at the 2021 census was 13,642 and the area has experienced a growth rate of approximately 1.8% annually since 2016 (equating to a 9.5% increase between 2016 and 2021).

Tourism provides a significant and predictable increase in population during the spring and summer months with an increase to over 20,000 persons anticipated each year.

The average age of residents is 56.7 years with a median age of 63.6 years, making Parksville one of the oldest communities in Canada (for comparison, Qualicum Beach residents are aged 61.2 years on average, and 67.5 by median whereas the BC average is 43.1 years).

Almost 45% of residents are 65 years or older, and around 5% are over 85. This skews the average age in Parksville (20% of the general Canadian population is over 65 and only 2.3% are over 85) making these communities overrepresented within the City (see *Figure 1*). The Oceanside region has long been a popular retirement destination as well as a place that retiring residents do not want to move away from, given its natural beauty, relaxed lifestyle, access to services and proximity to major centres like Nanaimo.

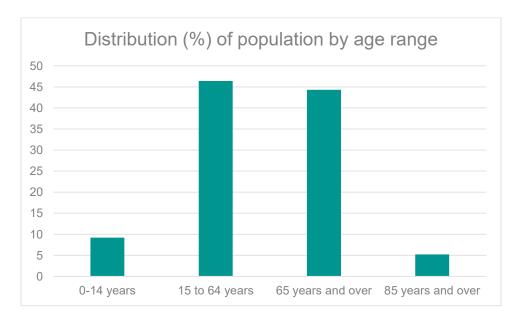


Figure 1: Distribution of Parksville's population by age range¹

¹ Source: StatsCan

Transportation Master Plan: Base Conditions Assessment Prepared for City of Parksville

2.2. LAND USE IN THE REGIONAL CONTEXT

In 2011, the City of Parksville, along with other municipalities within the Regional District of Nanaimo (RDN), endorsed the adoption of the Regional Growth Strategy (RGS) which was titled *Shaping Our Future*. This document outlines the land use and anticipated growth throughout the regional district and the individual Official Community Plans (OCPs) of the constituent communities are obligated to be consistent with this document. The RGS sets policy direction for areas including climate change, environmental protection, land use, housing, economic resiliency, food security and infrastructure. Regarding land use and housing, the RGS identifies most properties within Parksville as 'Urban Areas' which carries prescribed definition that supports a broad range of urban uses serviced by community water and sewer systems (see *Figure 2*). New development within urban areas is encouraged to focus on mixed-use, designed to support commercial vitality and provide opportunities for multi-modal transportation and complete communities with options to live, work, and play within the same area. Open spaces, including parks, plazas, trails and other active linkages are encouraged (see *Figure 3* for the Regional Growth Framework).

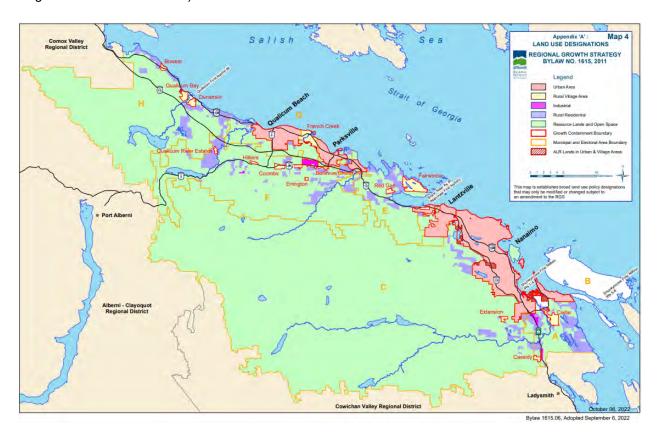


Figure 2: Land Use Designations at the Regional level

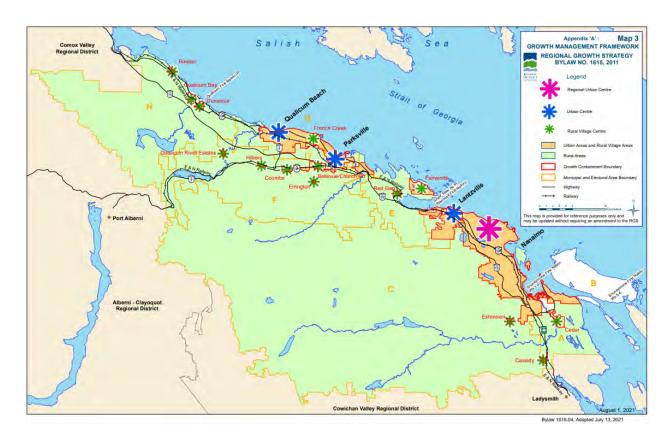


Figure 3: Growth Management Framework at the Regional level

2.3. STRATEGIC PLANNING FRAMEWORK

The Transportation Master Plan sits under the City's Official Community Plan (OCP) in terms of municipal decision-making and should seek to achieve consistency with the goals and objectives of the overall planning framework of the City, including the Regional Growth Strategy. The TMP provides a basis for strategic transportation planning, investment, and decision-making the works in coordination with other City strategies, such as the City's Strategic Plan (2023-26), Accessibility, Urban Forest Strategy, and Parks, Trails & Open Spaces plan.

3. Previous Relevant Studies

3.1. REGIONAL PLANS

The City of Parksville sits within the Regional District of Nanaimo (RDN) and as such there is some overlap in terms of responsibilities and governance. The City is responsible for local governance, services and decision-making within City-limits, while the RDN operates at a broader level, providing services and overseeing matters that affect the entire region (including Parksville) including regional planning and development, solid waste management, regional parks, transit (in coordination with BC Transit), and emergency planning and preparedness. The following sections outline some key documents that may influence transportation decision-making within the City of Parksville.

3.1.1. Regional Growth Strategy (2011)

As discuss previously, the Regional Growth Strategy (RGS) was adopted in 2011 to provide a consistent and coordinated approach to growth across the region that is embraced by the constituent jurisdictions (including Parksville) and provides guidance on policies, actions and targets associated with reducing Greenhouse Gas (GHG) emissions, among other areas of focus. The RGS helps to inform the future traffic demand forecasting that the TMP considers by providing assumptions around population and employment rates and areas of intensification. While local-level growth will provide the most immediate impacts for the transportation network, the potential increase in background growth across the region cannot be ignored, particularly the forecast growth of Nanaimo which is anticipated to grow by some 40% by 2046 (to 140,000 residents).

3.1.2. RDN Transit Redevelopment Strategy (2022)

The Transit Redevelopment Strategy (TRS) was adopted in 2022 and sets out a series of transit improvements for the next five years through a data-driven and collaborative planning process that aims to deliver attainable year-on-year improvements to the regional transit network. As the second biggest population centre after Nanaimo, Parksville is identified in the strategy as a key node that requires improved transit connectivity. The TRS identifies that the current Route 91 service that connects Qualicum Beach to the Woodgrove Exchange (via Parksville, Nanoose Bay and Lantzville), operates more like a local service than the extent of the route would suggest. The TRS proposes to convert the Route 91 service to the newly-named Route 9, which would operate as a Key Regional Route with improved frequency, service coverage, journey time, and stop spacing to better-connect the key urban centres throughout the region.

In addition, the strategy recommends improvements to the other existing routes within Oceanside to provide better connectivity between the downtowns of Qualicum Beach and Parksville, as well as key destinations like the Ravensong Aquatic Centre and Wembley Mall.

Recognizing that a significant number Parksville residents commute to Nanaimo for work, the TRS also recommends exploring options for developing Park & Ride locations towards the south end of the city to encourage more sustainable travel options and reduce unnecessary trips.

Finally, the Parksville Exchange (located at Jensen Avenue between Corfield Street and McCarter Street) is identified as being undersized for the future plans and it is recommended that this exchange be expanded to accommodate increased capacity and improve passenger amenities and waiting areas.

The TMP will remain cognizant of these regional transit improvements and work with both the RDN and BC Transit to ensure that recommendations (within the City's purview) are supportive of the proposed improvements.

3.2. CITY-WIDE STRATEGIES AND PLANS

The TMP is one of many planning documents that are used to guide decision-making and set policy across the City. The following sections summarize some additional relevant plans and policies that inform or are related to the TMP.

3.2.1. Official Community Plan (Consolidated to September 2023)

An Official Community Plan (OCP) is a long-term document that guides decision-making and sets a course for how a community wishes to evolve. The traditional approach is for the OCP to be revisited every 5 to 10 years to ensure that it continues to reflect the planning objectives and needs of the community however recent provincial legislation suggests that every 5 years is more appropriate. The City of Parksville is a member municipality of the Regional District of Nanaimo (RDN) and operates in accordance with the *Local Government Act* and *Community Charter* and as such updated its OCP in 2013.

The OCP contains a series of policies regarding areas such as land use, municipal infrastructure, natural environment, and sustainability and provides maps that illustrate the future land use designations across the town as well as the current transportation network. As the TMP is a document that is crafted to support the goals of the OCP, it is important to ensure that proposed projects, policies and strategies are aligned with the strategic goals for the future of the community, as set out in the OCP.

3.2.2. Transportation Master Plan (2016)

The City's Transportation Master Plan was last updated in 2016 and recommended no changes to road classifications throughout the City. Short-term improvements recommended as part of the plan included:

- Add a northbound protected/permitted left turn phase at Highway 19A/McMillan Street
- Install a southbound protected/permitted left turn phase at Highway 19A/Pym Street
- Restrict Tuan Road at highway 19A to right-out movement only
- · Provide improved parking lot signage for downtown area
- Develop and adopt a roundabout policy

Some additional, localized improvements were recommended along with a more general suggestion that the City encourage schools to develop *safe routes to school plans* and encourage the use of alternative transportation.

In general, the previous TMP was not overly ambitious in terms of the vision set out to improve transportation options for the City, and the focus was more on specific, local interventions to improve traffic operations.

While the previous TMP provides a helpful base for context, given the time since its adoption and the changes in attitudes towards transportation, development, safety, accessibility, climate, and community planning, the recommendations of the updated TMP will be drawn from the current planning process.

3.2.3. Downtown Revitalization Strategies (2006)

In 2006 the City of Parksville undertook a study to identify strategies to revitalize the downtown area with a focus on providing a downtown that was built for people (not cars). Led by the Economic Development Office, the goal was to develop a plan to create a memorable, marketable character for the area, increase connectivity between the downtown and waterfront, and to put Highway 19A to work for Parksville. Many of the ideas put forward as part of this plan have been implemented and contribute to the pleasant character of the current downtown area – the reimagining of Memorial Avenue, for example, has roots in this plan.

While the TMP will conduct community engagement specific to mobility, the spaces that people move around are as important and the insight that studies like the Downtown Revitalization Strategies provide is invaluable for identifying key destinations, corridors and spaces to facilitate movement to, from and through.

3.2.4. Community Park Master Plan (2018)

The Community Park is one of the key features and major destination of Parksville. Anchored by an exceptional children's playground, numerous sports and recreation opportunities, waterfront access, open green spaces and seasonal programming, it could be argued that the Community park is as much the heart of Parksville as the downtown area is. The plan focused on the internal challenges and opportunities of the park space, more so than access to it, and so the TMP should focus on identifying opportunities to support better linkages and connections to/from the park (as was indicated as a priority by survey respondents as part of the engagement process).

3.2.5. Parks, Trails and Open Space Master Plan (2019)

The Parks, Trails, and Open Spaces Master Plan was developed through an integrated planning process that took inventory of the City's trails and parks, undertook multi-stage community engagement and led to the adoption of five guiding principles as part of an overall action plan of 100 recommendations. The plan recommends several linkages (notably the connection from Rathtrevor Beach to the Englishman River Estuary) and areas for crosswalk and urban trail improvements.

3.2.6. Accessibility Plan (2023)

The City of Parksville Accessibility Plan contains 34 recommendations across four focus areas that are intended to guide decision-making over the next three years. Specific to the built environment that is affected by the TMP, the plan contains recommendations around the promotion of barrier-free universal

design, accessibility to all areas of the City (including the beach), sidewalk standards, signage and accessible parking.

3.2.7.2023-2026 Strategic Plan

The Strategic Plan sets out the priorities of the City over the coming three years with a focus on six areas, of which the "Vibrant and Livable Downtown" focus area provides the most relevant guidance for the TMP. Objective 3.2 seeks to develop plans to deploy traffic calming on Highway 19A, address downtown parking, and enhance pedestrian connectivity and transportation options to improve the overall downtown user experience. The plan recognizes that attracting and retaining visitors, as well as enhancing livability for residents, by creating a strong sense of place needs to be supported through deliberate choices regarding investment in transportation infrastructure and policies.

4. Existing Travel Market and Influences

4.1. MODE SHARE AND TRAVEL CHARACTERISTICS

The transportation network in and around Parksville is generally geared towards facilitating travel by private automobile. The nearby Highway 19 provides a fast and efficient connection to the nearby cities of Courtenay and Nanaimo as well as the rest of the island, and Highway 4A is the key route across to the western communities of Port Alberni and Tofino. The city is bisected by Highway 19A, the Island Highway, which provides a more scenic, alternative route for regional travel as well as a direct connection into and out of the city. Within the town, a network of collector-style roads provides easy navigation and access to all neighbourhoods and free parking is readily available in most commercial areas.

The nature of Parksville's development as a low-density community has led to an auto-dominated travel market that exists to this day. This is evidenced by the recent (2021) StatsCan data that indicates that 86% of the employed population travels to work by private automobile (either as a driver or passenger). Commuting by bicycle is relatively rare but walking is somewhat overrepresented (8%) compared to similar jurisdictions in BC where the average is typically around 5-6%. Transit ridership is low at 1%, which is fairly typical given that transit service is not as fast or convenient as driving. *Figure 4* summarizes this breakdown.

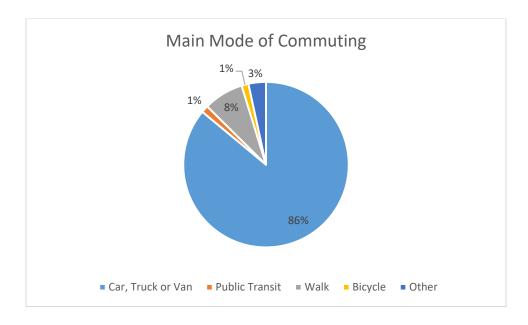


Figure 4: Commuter Mode Share

Commuters in Parksville (either travelling to or from) typically travel less than 30 minutes to get to their workplace (see *Figure 5*). This represents a commuter-shed that covers an area from Fanny Bay to Nanaimo, indicating the ease of movement across this part of the island.

Figure 5: Duration of typical commute

5. Active Mobility

5.1. PEDESTRIAN INVENTORY AND ASSESSMENT

Parksville is best characterized as a car-dependent community where many everyday errands, such as grocery shopping, or medical appointments, require a car. Walking is typically associated with the end of a vehicular trip, whether for recreational purposes or not.

Most streets and roads within the downtown area provide sidewalks on either side of the roadway, as do many of the major collector corridors that connect the downtown to the broader urban area. Many of these sidewalks are in need of refurbishment and community feedback has indicated that the design of sidewalks can often present challenges for users of mobility devices. Significant improvements to the pedestrian environment in the downtown area have been progressed in recent years including the pedestrianization of a section of Memorial Avenue with associated active mobility features including branded pedestrian crosswalks (see Figure 6), reduced crossing distances at Alberni Highway, and enhanced street furniture throughout. The downtown area (away from Highway 19A) contains many convenient opportunities to cross streets with well-signed pedestrian crosswalks at many locations. The prevalence of off-street parking lots means that pedestrians frequently need to navigate parking areas to access stores and businesses although walk distances are relatively small.

Figure 6: Branded pedestrian crosswalk

In 2020, City Council adopted a position that for local roadways without sidewalks, the City could approach roadway renewal using an Alternative Road Cross Section for Urban Local Roadways (RC1a) for non-pedestrian priority urban roads, which would mean that sidewalks would not be provided in the renewal process. Aside from the significant cost-savings identified over an extended Capital Renewal timeframe, the flexibility that this approach provides allows for more focus/investment to be placed on the pedestrian priority network.

The pedestrian experience along the Highway 19A corridor is mixed, with many areas along the corridor benefiting from a generous tree canopy and views towards to the ocean. In most areas, the sidewalks can be narrow, with no buffer between pedestrians and fast-moving traffic on the roadway. Crossing opportunities are spread out and not always aligned with key destinations on the beach-side of the highway. Between McVickers Street and Shelly Road (approx. 700m) there is no formal crossing infrastructure, resulting in reported instances of jaywalking across the five lanes of highway traffic (*Figure* 7 shows an example of this area).

Figure 7: Limited crossing options along Highway 19A

Outside the downtown core, most residential areas either lack sidewalks altogether or sidewalk provision is inconsistent and disconnected. This includes some key routes such as Harnish Avenue (see *Figure 8*).

Figure 8: Harnish Avenue (looking eastbound towards Moilliet Street)

The existing pedestrian infrastructure is illustrated in *Figure 10*. The figure displays the City's sidewalk coverage and trail networks. There is good sidewalk coverage in the downtown and along Highway 19A, but limited sidewalk coverage in the residential neighbourhoods. There are many pedestrian trails along the beachfront and around the park spaces including the Maple Glen linear walkway, a 1km north-south pedestrian trail from Morrison Ave to Despard Ave that provides excellent connectivity for numerous neighbourhoods to the Parksville Wetland Trail and Coomb to Parksville Rail Trail. The Oceanside 'Waterfront Walkway' boardwalk runs from the end of McMillan Street to the Legacy Labyrinth, but that is the extent of the waterfront accessible network.

5.2. CYCLING INVENTORY AND ASSESSMENT

Parksville has a network of local and collector roads that cyclists can use, which are shown as "bike routes" in *Figure 10*. Some roads have designated, painted bike lanes or wide shoulders, while others may require cyclists to share the road with vehicles. The level of cycling infrastructure on local roads varies, but the routes are generally flat and are mostly suitable for cyclists of strong abilities who can share the lane with general traffic. There are limited push cycle buttons to cross major intersections, hindering the cycling network for all ages and abilities.

Temple Street has a long, continuous painted bike lane on both sides of the street and Despard Avenue (west of the Alberni Highway) has the only fully-protected bike infrastructure where a multi-use path connects to the Parksville Wetlands.

Bike parking facilities have been substantially improved in the downtown area through the provision of new bike parking stands along Memorial Ave (see *Figure 9*). Elsewhere the opportunities to safely park bicycles is limited and sporadic.

Figure 9: New bike parking infrastructure on Memorial Avenue

The Oceanside area takes part in the annual 'GoByBike' events that are organized by GoByBike BC to encourage cycling to work as a regular mode choice.

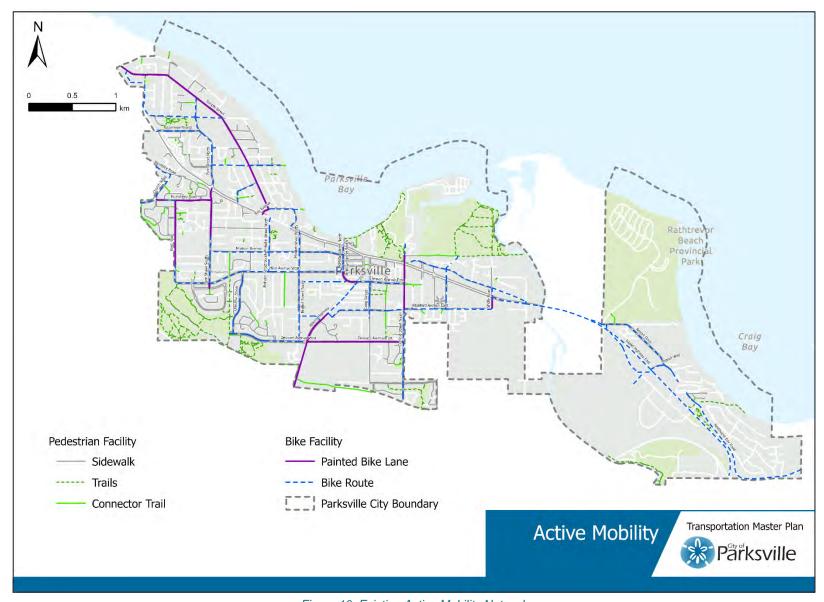


Figure 10: Existing Active Mobility Network

6. Transit

6.1. OPERATING CONTEXT

Parksville's transit is delivered through a collaboration between BC Transit and the Regional District of Nanaimo (RDN). BC Transit is a provincial agency that is responsible for providing public transportation to BC communities outside Metro Vancouver and in most locations leads the delivery of those services. In the RDN, long-range planning, route planning, scheduling, and operating are all conducted by RDN Transit, with support from BC Transit.

The RDN recently adopted a new Transit Redevelopment Strategy that has implications for transit operations in the City.

6.2. TRANSIT INVENTORY AND ASSESSMENT (SERVICE, FACILITIES, FREQUENCIES, RIDERSHIP, COVERAGE)

Parksville is served by local bus routes that connect the city to nearby areas on Vancouver Island, including Qualicum Beach, Nanaimo, and other communities. The existing bus routes and bus stops are illustrated in *Figure 11*.

Currently there are two bus routes that run in the City of Parksville: the #91 which is an intercity route between Nanaimo and Qualicum Beach, and the #88 which is a local route servicing the west side of Parksville. Both routes are classified as low frequency, with buses every 50 minutes to 1 hour. The #91 has a service operating during the peak morning and evening periods that connects to the #25 Ferry Shuttle.

As indicated by the 400m walk catchments in the figure below, transit coverage in terms of access to transit stops is relatively good, with most of the city falling within a reasonable walk-distance. However, service frequency and speed of travel often play as much of a factor in the decision-making as proximity to transit stops, availability of parking and ease of driving.

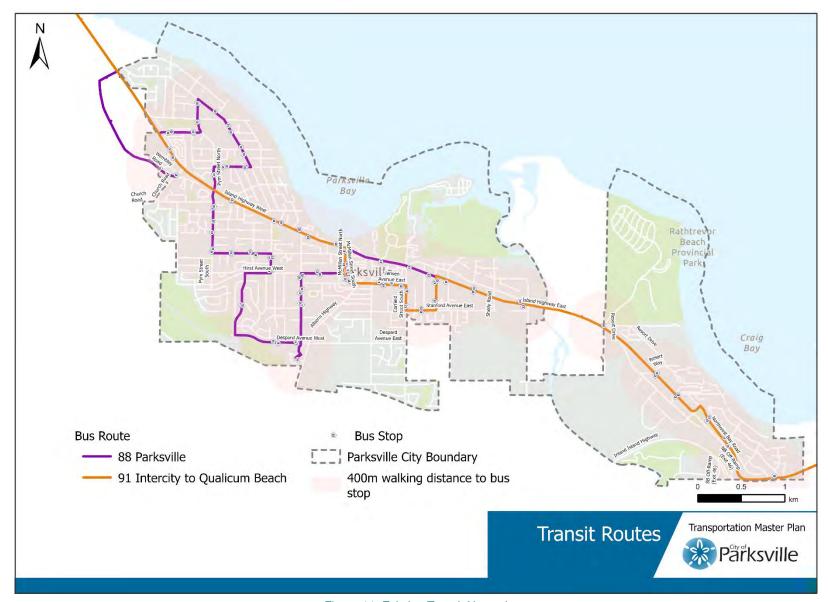


Figure 11: Existing Transit Network

7. Auto and Parking

7.1. ROAD INVENTORY AND ASSESSMENT (CLASSIFICATION SYSTEM, CROSS-SECTIONS)

Parksville has approximately 130 kilometres of roadway, which are classified as major arterials, collectors, or local. The road classifications for Parksville are illustrated in *Figure 12*. Road classifications vary by traffic volume capacity, speed, and access.

Major Road Network

- **Highways**: major roadways that connect Parksville to other municipalities. Highway 19A, the Island Highway, is the major highway that facilitates traffic in Parksville. Note that Highway 19A has varying speed limits within Parksville (50-60km/h).
- Arterial: Designed to facilitated movement of high traffic volume between neighbourhoods, suburbs, and urban areas. The Alberni Highway is a key arterial in Parksville that facilitates north-south traffic. In Parksville arterials have a posted speed of 50km/h.

Neighbourhood Street Network

- Collectors: Moderate capacity roads designed to collect traffic from local streets and circulate to
 the arterial roads. Collectors have a posted speed of 50km/h, except for around schools and
 playgrounds where the posted speed is 30km/h during school hours. Collectors help improve
 connectivity within communities by providing a network of roads that allow residents and
 businesses to access the larger transportation network while minimizing traffic on local residential
 streets.
- Local: Roads that primarily serve neighborhoods, residential areas, and small-scale commercial
 or industrial areas. These roads are typically designed for low-speed, low-traffic environments
 and are intended to provide access to individual properties and homes. Local roads have lower
 speeds and are not designed for through traffic. Many local roads lack sidewalks, crosswalks, and
 bike lanes that would encourage pedestrians and cyclists and making them more accessible for
 non-motorized transportation.

7.2. TRAFFIC OPERATIONS

A review of the traffic conditions in Parksville was completed to identify traffic intersections in the downtown core that currently experience significant delays and/or capacity constraints. Traffic intersection analysis was performed using Synchro Software for the intersections in downtown Parksville along Highway 19A. Traffic counts were collected for each of the intersections from 7am – 10am and 2pm – 6pm to identify the morning and evening peak hour traffic volumes for each intersection. *Figure 13* illustrates a summary of the traffic conditions in downtown Parksville in terms of Level of Service (LOS) for both the morning (AM) and evening (PM) peak hours. Intersection LOS quantifies the average delay for all movements for the intersection. Also illustrated in the figure is the traffic intersection control type.

Details on the Synchro software, methodology, analysis inputs and reporting metrics are provided in *Appendix B*. Operational results for the study intersections at the movement level by peak hour (v/c ratio, delay, Level of Service (LOS), and 95th-percentile queue length) as can be found in *Appendix B*.

All intersections in the study area perform at LOS C or better (green in *Figure 13*) for both AM and PM peak hours. There are a few movements that perform at LOS D, mainly left turns that have high volumes and short signal time phases. The NBL and NBR movements at Bagshaw St perform at LOS E which signifies significant delays. The intersection of Bagshaw St and Highway 19A is stop controlled for the NB movement which has lower capacity than a signalized intersection control. The traffic analysis also identified significant queuing on Highway 19A for both the EB an WB directions at the intersections of Corfield St and McCarter St.

7.3. TRUCK AND EMERGENCY ROUTES

There are no designated trucking routes within the city and generally the wide roadways are able to accommodate all typical service and delivery vehicles to most locations within the City. BC Ambulance Service and Parksville Fire Rescue have location on or near the Alberni Highway, which provides direct access to the central parts of the city and from there to the residential suburbs.

7.4. DOWNTOWN PARKING INVENTORY

A parking inventory for downtown Parksville was completed which identifies the number of parking spaces available by time duration and access (private vs public). The parking inventory is illustrated in *Figure 14*. An inventory of the existing accessible dedicated spaces was also conducted, and the exact location of these spaces are illustrated in *Figure 14*. As shown in the figure, the majority of downtown has public on-street parking with a 2-hour time limit. Alberni Highway has on-street parking with only a 1-hour time limit, and McMillan Street does not have on-street parking. There are few public parking lots in downtown Parksville, but several businesses have private parking lots. Most of the parking lots have at least one dedicated accessible parking space. There are few dedicated on-street accessible parking spaces, generally these are located in front of medical practices.

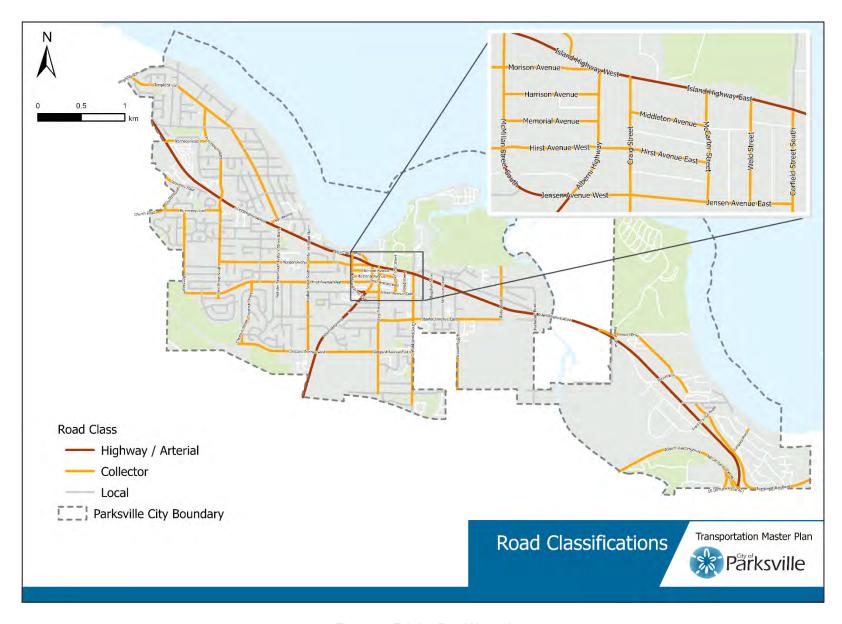


Figure 12: Existing Road Network

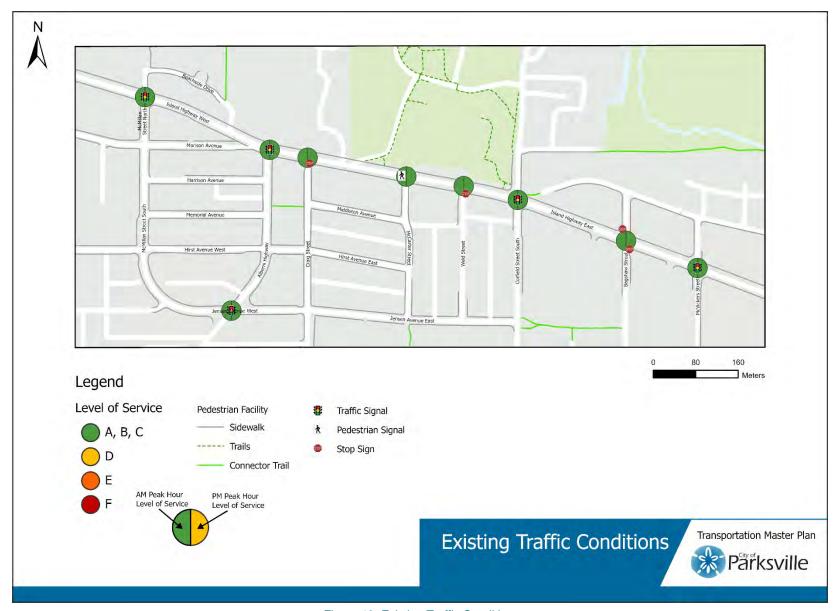


Figure 13: Existing Traffic Conditions



Figure 14: Existing Parking Inventory

8. Community Engagement #1 – Issues, Opportunities, aspirations

8.1. SUMMARY

The first round of engagement involved a five-hour public open house on November 8, 2023, attended by about 100 residents. The open house included presentations of the base conditions assessment work as well as extensive questions and answers and discussion time to hear thoughts and insights from the community. The full engagement report and materials presented are provided in *Appendix A*.

Following the open house, several meetings were held with interested community groups and agency representatives to receive specific feedback and input, which will be incorporated into the future phases of the project.

Aside from general questions about the process, some of the key areas of interest that were repeatedly raised throughout the community engagement and are detailed here:

- The Island Highway acts as a barrier to movement between the downtown and the waterfront, especially for families and those with mobility challenges.
- There are concerns about the new provincial legislation regarding an increase in housing and how this may translate to Parksville.
- Scheduled stop times should be kept for transit service at key locations to make it more reliable.
- Opportunities to take traffic off Highway 19A should be explored as there still needs to be capacity to
 move across the City; the Jensen Avenue extension has been looked at in the past but never
 implemented.
- Safety, especially for people with accessibility issues, within the community is paramount and speeding (particularly along the Island Highway) was flagged multiple times as an issue.
- Better bike infrastructure would mean fewer bikes on sidewalks, which is a safety concern for pedestrians.
- The existing sidewalk design needs to be improved. Examples include curb cuts that often drop down
 to the corner of the intersection, rather than being aligned with the crosswalk, and obstacles within
 the sidewalk that make movement difficult.
- The sidewalk surface can often be an uncomfortable experience for those in mobility scooters, which leads to them using the roadway (where no bike lane is present).
- The connectivity between Resort Drive and Rathtrevor Beach Provincial Park and the downtown is seen as being unsafe, particularly for families.
- Moving through the City should be a pleasant experience.

In addition to the in-person engagement, a public survey was made available on the City's website and 'Let's Talk Parksville' to collect responses from residents. With over 300 completed surveys, the feedback was extremely helpful in better understanding how mobility in Parksville is perceived. Some key highlights from the survey responses are detailed here:

- Of the 52% of respondents who felt the Island Highway signals should be re-coordinated, 57% suggested pedestrian crossing movements should be prioritized.
- Walking is the preferred mode of active transportation, with 70% of respondents stating it as their most frequent mode. Almost 60% of respondents indicated active transportation was primarily for recreation.
- Close to 95% of respondents indicated they ride transit infrequently or never.
- On parking, around 18% of respondents indicated they are unable to find parking within a reasonable distance of their destination daily; 56% said this happens infrequently.
- Pedestrian and cyclist safety dominated concerns, with 87% of respondents stating these as being their primary concern (over vehicular safety).
- 78% of respondents stated they would, at least partly, be willing to fund upgrades and improvements through increased taxes.

The overwhelming majority of respondents expressed a desire for Parksville to become a walkable, vibrant, well-connected, and accessible community with a small-town feel. Specifically, respondents identified the following aspirations and ideas for the future (twenty years) of Parksville:

- World-class bike and pedestrian friendly community with dependable transit, and less cars.
- A City which provides for all types of transportation and has adequate parking available to the downtown to support businesses.
- Community where people <u>want</u> to walk and cycle because it is the <u>best way</u> to go to the downtown area.
- Waterfront trail system from French Creek to Rathtrevor Beach.
- Create a 'ring road' from McMillan, through Jensen and connecting to McVickers.
- Dedicated bike lanes, frequent reliable transit, pedestrian friendly downtown core.
- Developments planned as complete neighbourhoods to reduce reliance on vehicles for mobility.
- "I would like to be able to safely go downtown with my family using active transportation and feel safe and respected."
- More parking spaces.
- More wheelchair access to the beach so people can actually go out on the beach.
- No highways intersecting the City.
- Slow down the traffic.

Based on the community feedback, the following **Core Themes** define the priorities for the TMP moving forward:

ACTIVE - Residents want a walkable downtown that is well-connected to key destinations around the City through a complete network of bike and pedestrian infrastructure. Specifically, connectivity to Rathtrevor Beach and the Parksville Community Park are very important.

BALANCED - While the City should be bike- and pedestrian-friendly, there is a need to provide access for drivers, deliveries, and emergency vehicles to the downtown core where parking should be

conveniently located to support the business community. Changes to the Island Highway need to be balanced by travel opportunities on other corridors.

SAFE - The City should be a safe and pleasant environment to move through, with appropriate speed limits consistently enforced, improved lighting, protected and/or dedicated bike facilities, a comprehensive tree canopy, and enhanced crossing opportunities on busy corridors.

ACCESSIBLE – Parksville's median age (63.6) is notably higher than the BC average (43.1) and as such there are many residents with mobility challenges who utilize mobility scooters and other devices to get around. Design improvements need to be cognizant of this and provide infrastructure which is universally accessible.

These themes will form the foundation of the opportunities that are developed through the subsequent phases of work as we seek to develop a TMP that is reflective of the needs of the community.

9. Summary of Issues and Opportunities

9.1. ISSUES AND OPPORTUNITIES

The table below presents the key issues and opportunities identified by the technical analysis, an assessment of existing infrastructure, community feedback and discussions with City staff.

Table 1: Summary of Issues and Opportunities

Issue	Discussion	Opportunities
Traffic Operations	 Traffic operations along the Island Highway are generally acceptable, with some congestion noted on specific, left-turn, movements. Crossing the Island Highway as a pedestrian can often be challenging, given the spacing of safe crossing points, the overall width of the roadway, and the priority given to vehicular traffic. There are limited east-west travel options aside from the Island Highway corridor. 	 Reduce the highway's effect as a barrier to pedestrian movement between the downtown and waterfront and reinvent the corridor as a street that better-serves the community. Explore the potential to create alternative corridors for cross-city movement.
Lane Widths	 Some roadways are oversized for their current purpose with wide lanes encouraging higher speeds than those posted. 	 Review roadway design standards to move in a direction that prioritizes safety and accessibility.

		2 11 1 1 1 1 1 1 1 1
Transit	 Transit coverage is good, but service frequencies and stop locations could be improved. 	 Collaborate with the Regional District of Nanaimo and BC Transit to find ways to improve and optimize transit service.
Active Mobility	The active mobility network is inconsistent and often disconnected with many high-demand areas under-served by the current infrastructure. Painted curb lines are often used as proxy bike lanes but are not designed to industry standard and do not provide adequate protection.	• Focus on key corridors that would benefit from enhanced pedestrian and cycling infrastructure and update roadway design standards to encourage the adoption of this infrastructure. Identify gaps in the network to connect with formalized infrastructure, such as the walkway between Harnish Ave and Despard Ave.
Accessibility	 Accessibility is a challenge in many areas with identified barriers including misaligned curb cuts, street furniture, and long crossing distances. 	 Review roadway design standards and policies regarding accessibility to be consistent with the goals of the Accessibility Plan.
Population Growth	The downtown core has seen many positive improvements in recent years, such as the pedestrian area of Memorial Avenue which enhances the walkability of the downtown. There are concerns that continued growth will undermine these efforts if not planned properly.	Identify areas to support walkability through urban design, transportation planning, and development requirements that encourage a 'complete community' approach.
Parking	Parking supply in the downtown is generally good, with a mix of on- and off-street parking provided to support businesses but, anecdotally, there is a tendency for visitors to drive to each new location within the city, even if the distance is walkable, out of convenience.	 Explore strategies to encourage a 'park once' culture for both residents and visitors through physical location of parking, wayfinding, and other regulations.
Safety	 The connection from Rathtrevor Beach and the resort area – a major destination for visitors – and the downtown is viewed as unsafe from an active mobility perspective. 	Improve safety and mobility choice for this strategic connection.

9.2. NEXT STEPS

Following the completion of the base conditions assessment report, Phase 2 of the TMP study focuses on developing options and strategies for addressing the identified issues and quantifying the benefits of recommended approaches. A second community engagement session is planned for March 5th, 2024 to share these ideas with the public and receive feedback.

Appendix A

What We Heard Report #1

City of Parksville Transportation Master Plan

What We Heard Report #1

Engagement Summary

The first round of engagement involved a five-hour public open house on November 8, 2023, attended by about 100 residents. The open house included presentations of the base conditions assessment work as well as extensive questions and answers and discussion time to hear thoughts and insights from the community. The information presented at this open house is provided at the end of this report.

Following the open house, several meetings were held with interested community groups and agency representatives to receive specific feedback and input, which will be incorporated into the future phases of the project.

Aside from general questions about the process, some of the key areas of interest that were repeatedly raised throughout the community engagement and are detailed here:

- The Island Highway acts as a barrier to movement between the downtown and the waterfront, especially for families and those with mobility challenges.
- There are concerns about the new provincial legislation regarding an increase in housing and how this may translate to Parksville.
- Scheduled stop times should be kept for transit service at key locations to make it more reliable.
- Opportunities to take traffic off Highway 19A should be explored as there still needs to be capacity to move across the City; the Jensen Avenue extension has been looked at in the past but never implemented.
- Safety, especially for people with accessibility issues, within the community is paramount and speeding (particularly along the Island Highway) was flagged multiple times as an issue.
- Better bike infrastructure would mean fewer bikes on sidewalks, which is a safety concern for pedestrians.
- The existing sidewalk design needs to be improved. Examples include curb cuts that often drop down to the corner of the intersection, rather than being aligned with the crosswalk, and obstacles within the sidewalk that make movement difficult.
- The sidewalk surface can often be an uncomfortable experience for those in mobility scooters, which leads to them using the roadway (where no bike lane is present).
- The connectivity between Resort Drive and Rathtrevor Beach Provincial Park and the downtown is seen as being unsafe, particularly for families.
- Moving through the City should be a pleasant experience.

In addition to the in-person engagement, a public survey was made available on the City's website and Let's Talk Parksville to collect responses from residents. With over 300 completed surveys, the feedback was extremely helpful in better understanding how mobility in Parksville is perceived. Some key highlights from the survey responses are detailed here:

 Of the 52% of respondents who felt the Island Highway signals should be re-coordinated, 57% suggested pedestrian crossing movements should be prioritized.

- Walking is the preferred mode of active transportation, with 70% of respondents stating it as their
 most frequent mode. Almost 60% of respondents indicated active transportation was primarily for
 recreation.
- Close to 95% of respondents indicated they ride transit infrequently or never.
- On parking, around 18% of respondents indicated they are unable to find parking within a reasonable distance of their destination daily. 56% said this happens infrequently.
- Pedestrian and cyclist safety dominated concerns, with 87% of respondents stating these as being their primary concern (over vehicular).
- 78% of respondents stated they would, at least partly, be willing to fund upgrades and improvements through increased taxes.

The overwhelming majority of respondents expressed a desire for Parksville to become a walkable, vibrant, well-connected, and accessible community with a small-town feel. Specifically, respondents identified the following aspirations and ideas for the future (twenty years) of Parksville:

- World-class bike and pedestrian friendly community with dependable transit, and less cars.
- A City which provides for all types of transportation and has adequate parking available to the downtown to support businesses.
- Community where people WANT to walk and cycle because it is the BEST WAY to go to the downtown area.
- Waterfront trail system from French Creek to Rathtrevor Beach.
- Create a 'ring road' from McMillan, through Jensen and connecting to McVickers.
- Dedicated bike lanes, frequent reliable transit, pedestrian friendly downtown core.
- Developments planned as complete neighbourhoods to reduce reliance on vehicles for mobility.
- "I would like to be able to safely go downtown with my family using active transportation and feel safe and respected."
- More parking spaces.
- More wheelchair access to the beach so people can actually go out on the beach.
- No highways intersecting the City.
- Slow down the traffic.

Based on the community feedback, the following **Core Themes** define the priorities for the TMP moving forward:

ACTIVE - Residents want a walkable downtown that is well-connected to key destinations around the City through a complete network of bike and pedestrian infrastructure. Specifically, connectivity to Rathtrevor Beach and the Parksville Community Park are very important.

BALANCED - While the City should be bike- and pedestrian-friendly, there is a need to provide access for drivers, deliveries, and emergency vehicles to the downtown core where parking should be conveniently located to support the business community. Changes to the Island Highway need to be balanced by travel opportunities on other corridors.

SAFE - The City should be a safe and pleasant environment to move through, with appropriate speed limits consistently enforced, improved lighting, protected and/or dedicated bike facilities, a comprehensive tree canopy, and enhanced crossing opportunities on busy corridors.

ACCESSIBLE – Parksville's median age (63.6) is notably higher than the BC average (43.1) and as such there are many residents with mobility challenges who utilize mobility scooters and other devices to get around. Design improvements need to be cognizant of this and provide infrastructure which is universally accessible.

These themes will form the foundation of the opportunities that are developed through the subsequent phases of work as we seek to develop a TMP that is reflective of the needs of the community.

Online Survey Responses – Qualitative Response Analysis

This section summarizes the recurring themes that emerged from the open-ended questions contained within the survey. The responses were wide-ranging and contained many excellent ideas and suggestions; these have been collated and organized by category to provide a clear overview of the priorities of the community.

Traffic & Signals

Key Theme: Prioritization of Pedestrians

Q: For signalized intersections along the Island Highway, could the balance between through traffic times and pedestrian crossing times be improved?

When asked how the balance between through traffic times and pedestrian crossing times could be improved, the key theme of responses was **a preference for pedestrian prioritization**, with proposed systems that accounted for different needs across the day such as pedestrian-oriented signal timing during the day, with signal timing prioritizing free-flow traffic in the evenings.

Q: Are there specific intersections where these issues are more prominent?

Respondents noted that the intersections most in need of signalization updates were Highway 19A & Corfield, Highway 19A & McCarter, Highway 19A & Alberni Highway, Highway 19A & McMillan, and Alberni Highway & Despard.

Q: How could the Island Highway be improved through the downtown, or any other section, to better suit the future needs of the City? Please explain the nature and location of your suggestion (an example might be longer left-hand turn lane turning left from Island Highway northbound onto McVickers).

Suggestions on how the Island Highway could be improved to better suit the needs of the City, survey respondents showed a strong preference for efforts to **improve walkability using traffic calming measures** and cycling and pedestrian-friendly interventions including slower road speeds and improved bike lanes. Many participants suggested the implementation of vehicle-free zones in the Downtown core and Community Park area. Notes on how to enhance the signalization at certain intersections were also provided.

Active Transportation

Key Theme: Desire for improved cycling and pedestrian infrastructure and programming

Q: How do you most frequently use active transportation?

Respondents noted that they most frequently used active transportation for errands and shopping, with many noting that they live close enough to downtown to walk comfortably. Many noted that they would prefer to cycle or use transit more frequently if the scheduling and infrastructure made these options more convenient.

Q: Are there specific gaps in the active transportation network you would like to see filled? (an example might be between Harnish and Despard)

Notable gaps in the active transportation network identified by survey respondents included sidewalk gaps along Alberni Highway between Jensen and Despard, along Highway 19A near Downtown and the Community Park, and along Stanford and Morison. Comments on gaps in the cycling network focused on poor signage and road markings, with pleas for designated bike lanes to keep cyclists safe. Comments on future trail networks focused on connecting a trail network from the Community Park to Rathtrevor.

Q: Are there any other active transportation issues that you would like to see addressed?

When asked if there were any other active transportation issues they would like to see addressed, survey respondents noted a clear preference for interventions to make cycling safer and more desirable, as well as improving the pedestrian experience through measures such as improved sidewalks and slowing traffic speeds.

Transit

Key Theme: Importance of Bus Shelters

Q: The City is not responsible for transit scheduling and service; however, we can control stop infrastructure and access to stops. Are there locations where you would like to see the City improve transit access?

Survey respondents noted a desire for more bus stops to have bus shelters and stops that were fully accessible. Key areas highlighted for improvement were Downtown and French Creek.

Q: Are there any other transit issues that you would like to see addressed?

When asked if there were any other transit issues they would like to see addressed, participants focused on extending service routes to include service to Courtenay and/or Nanaimo, specific routes to access the pool, and increasing the frequency of service on existing routes.

Parking

Theme: Downtown parking should accommodate both staff and tourist parking needs

Q: Are parking regulations clear and appropriate within the downtown core? If no, please explain.

When asked if parking regulations are currently clear and appropriate within the downtown core, some respondents noted that spaces were inadequate when staff parking spaces were taken into account, and that enforcement of parking restrictions is an issue.

Q: Are there any other parking issues that you would like to see addressed?

When asked what other parking issues should be addressed, participants highlighted a need for increased parking availability in the downtown core, particularly during the summer months, with some participants requesting the construction of a parkade. An increase in accessible parking was also requested from many participants.

Safety

Theme: Poor Adherence to Traffic Laws

Q: Do you have any concerns about the safety of transportation infrastructure in Parksville, for the below users? Please select all that apply.

When asked what safety concerns were prominent in Parksville's transportation infrastructure, survey participants highlighted vehicle speed and hazardous driving as safety issues, particularly for pedestrians and cyclists. Poor or unconnected cycling infrastructure was also noted as a key concern. General responses noted the importance of the community feeling safe for pedestrians, with a focus on walkability.

Q: Are there other areas of regulatory (right of way controls) signage that you find to be confusing, inconsistent, inefficient, or otherwise not supporting the desired motorist or pedestrian behaviour?

General comments on regulatory signage included requests for better intersection controls accessible to cyclists, as well as signage lettering to have better contrast. Traffic regulations and operations should be consistent to avoid confusion.

Funding

Theme: Willing to support Active Transportation projects

Q: The current model of upgrades being triggered by development can often result in a patchwork network of improvements that are poorly connected. On a scale of 1 to 5, how willing are you to fund upgrades through increased taxation.

When participants were asked about their willingness to fund upgrades through increased taxation, a significant proportion of respondents noted that they would be willing to fund projects that support walkability and livability, with a focus on active transportation infrastructure.

Q: Are there specific enhancement projects that you would be willing to fund via direct charges or taxes?

Projects that participants noted they were willing to fund consisted mainly of sidewalk and cycling infrastructure.

Vision

Theme: Walkability

Q: Flashing forward twenty years, what do you hope to see for Parksville's future mobility and transportation?

When asked "flashing forward twenty years, what do you hope to see for Parksville's future mobility and transportation?" survey respondents overwhelmingly noted a hope for a more pedestrian-friendly Parksville, with less reliance on automobiles and more support for cycling and transit.

Public Engagement #1 – Presentation Notes (November 8, 2023)

This section provides detailed notes taken throughout the public engagement, constituting four separate presentation and Q&A sessions that provided opportunities for all attendees to hear about the project and voice their questions, comments, suggestions and concerns.

Presentation 1: 2:15pm (~30 attendees)

Question: Is this presentation going to be on the website?

Response: Yes

Question: Are there any conflicting jurisdictions with roadways? For example, The Regional

District, MoTI roads, or City roads

Response: Everything in the TMP will have to be City infrastructure (which ends at the boundary on

Highway 19 at the railroad tracks. Some places like Corfield Street where some

properties on either side of the road are within different jurisdictions, but the roadway

itself is City jurisdiction.

Question:

What is the timeframe for this project?

Response:

The TMP should be wrapped up sometime in middle of the year (2024). The next engagement session will take place in the new year. Specific projects will occur somewhere within a 1-7 year timeframe depending on how easily implementable they are, or if significant design phases and preceding works are required. The core of this project is about providing the framework to set out projects to complete when funding becomes available for those projects. The strategic nature of creating a full plan means it will take long time to build out the projects. This plan should be complete by the summer of 2024, and is to be used as a tool for the City to refer back to as funding and/or development contributions are made available. There may also be policy changes that can impact these timelines.

Question:

What are the impacts of Bill 4 – will the increased housing due to this change be addressed? Our infrastructure is not set up for that.

Response:

Yes, very recent changes from the Province may incite a shift of increasing density. We take our direction for what future demand will be from the OCP. If that changes due to new legislation, this new projected trip generation will be designed to that new data.

Question:

Can we take into account where hundreds of new units will be going in, such as in my neighbourhood?

Response:

This question seems to be about how to manage transportation in areas that become denser. This is a plan for the whole city, looking at overall demand in the community, and won't be able to get into the individual impacts to specific streets at that level of detail. However, traffic zones will be looked at with change over time, and notes on where certain changes to infrastructure will be required. This question is focused on a higher level of detail than what this plan will respond to, but the TMP *can* respond to the larger scale. It can do things to make sure that despite the number of people, it may not necessarily generate more traffic trips.

Question: Response:

They are putting up huge complexes like Berwick, without supporting infrastructure By another participant: This is something to take to your MLA and/or is managed by your vote rather than this process

By McElhanney: Overall, this community is quite low in density. However, there is a shift in concentrated density, and there is a need to support transportation for the people feeling the impact of these changes. Parks and Trails Master Plans and Servicing Master Plans etc. respond to some of these things, though this project can only look at what is in the TMP scope.

Question:

You talk about a 20-year vision ahead – who gives us this vision?

Response:

Essentially, the people do! We have experiences with these projects, and usually similar issues come up (safety, accessibility, etc.) but the specifics themselves are unique to community issues, so we can't have a cookie cutter approach. We need to understand what this means to YOU in Parksville. We want to collate this information from the community, and craft a statement that reflects these views.

Question: Response:

How are bus scheduling and frequency determined? Is this a question for the RD? Generally, this can depend on how many buses there are, and how efficiently the buses are being used. However, the City doesn't have control over bus schedules or routes.

Question: There should be designated bus stops at key locations, such as the mall, etc. We need

actually scheduled stops, where drivers don't drive by if they're early, etc.

Response: We can pass this information on to BC Transit/the Regional District

Question: For safety issues (such as bus routes on Wembley), why are they allowing more condos

in the area when there isn't the infrastructure there to keep people safe?

Response: I can't speak to past planning approvals. Development is a great way to leverage funding

for infrastructure improvements – but if we can flag these issues then we want to put them into the TMP to address this. This process feeds into the OCP, so if new standards are adopted, we can make those changes in the future, but we can't do this retroactively (if something is already in the queue, we can't go back and change the standards those projects are reviewed against). For example, the mall is bounded by the standards that were already in place at that time, and we can't enforce a standard until it is adopted.

Question: If zoning changes, does this change things?

Response: Utility modeling upgrades need to be done to see "what looks like what" if zoning

changes. There may be a necessity to revisit these documents, but at this stage we are looking to hear how the transportation network is working, what are some of the concerns, and how we can develop solutions for working with the implemented documents (such as the OCP). This will be an iterative process - other things will need to

be recalculated as a part of a feedback loop of changes.

Question: With the new government legislation changes to decrease the cost of housing, how

will the costs to developers be retained?

Response: I don't know to what degree this cost to developers will change, but if higher levels of

government say we have to do something we can't go against this change. This is kind of

what voting is for.

Question: Did McElhanney compose the previous TMP? Will there be a review of this document

as a part of this process?

Response: We did not compose the last TMP, though it was reviewed as a part of the process for

this new plan. Without knowing the context of how/why things were or were not delivered it's hard to use it as a benchmark. We want to set up a monitoring framework to see if we've reached the goals laid out by the new plan and if not, why? This will be

built into implementation and phasing of the plan.

Question: Can you clarify the connection to the Regional District and with BC Transit regarding

the bus system, specifically District 69? Traffic is changing, and a more efficient bus system would alleviate traffic on the road. For those new to using the bus to get around, it does not work well (for example, I can't take seniors classes in Qualicum via transit, and I am very restricted in my neighbourhood), How much pressure do you

have on these partners?

Response: Transit is very collaborative, and they tend to do a lot of engagement to try to use buses

as efficiently as possible. They do have a plan for how to redevelop their own plans. Nanaimo is looking at more rapid options for intercity travel, with ideas to provide better connectivity. As for plans to have better connectivity within Parksville, they tend to be precise about how that happens. It is reasonable to want to maintain travel within the

city, but if you have twice as many buses, that doesn't always lead to twice as many people using transit. It often means twice as many empty buses.

Question: Changes to traffic and climate change mean the previous question should be a priority

(improving transit service to encourage usage). If you can't get anywhere by bus, it

isn't helpful.

Response: Decision-making and governance of routes and schedules is within the Regional District

and BC Transit's jurisdiction. They want to be collaborative to see what people want to

see, so it is worth it to put these comments into the survey results.

Question: My question is regarding the Integration of the TMP and financing – development cost

charges impact transportation and other infrastructure (and may have associated funding from the government etc.) but the plan will require cost – will the plan cover what the cost is and the impact on taxes? I am supportive, but some people are very

protective of their property taxes.

Response: The end of the TMP document will have projects with dollar values attached. How these

dollars will work their way into the system is a part of the TMP.

Presentation 2: 3:00pm (~31 attendees)

Question: We've heard for years about putting a route around the community to take traffic off

Highway 19A, is this still a part of the discussion?

Response: We are not at the "exploring ideas" stage yet, we will be looking at options in the next

round of the conversation to determine which options are/aren't practical etc.

Question: You have stated that safety will be a main focus for the project, will you be looking at

speeding within the community?

Response: Yes! The City has robust traffic counting/speed counting etc. to see what average speeds

down corridors are, there is a bit of a bell curve (a bit more than desired speed). We want to hear where you've observed these issues. Often we see huge lanes and sidelines and then assign 30km – but when the road is designed to be faster, you drive faster. A lot of TMP's have recommended things like '20 is plenty' with 30km neighbourhood

community speed etc.

Question: Safety – is there an opportunity to actually show you safety issues in person?

Response: Generally, no. I am down here quite frequently, and if we get comments about observed

safety issues in certain areas, I have the benefit of coming and looking myself to see why

these issues might be happening. I will go check these issues out.

Question: I had no idea of the experience of certain people's barriers (e.g., sight challenged)

without experiencing them myself. How can we address this?

Response: These questions have been raised by community members. Previous projects I've done

have included things like 'design week' where we tried to navigate using mobility devices, blindfolds, etc. to try to better understand the impacts on transportation and mobility. These are all important topics and are woven into the process as we move through. Also, in looking at how kids and other perspectives navigate the city are

important.

Question: Response:

Will this study look at trucks traffic in certain areas that don't need to be there?

There is no designated truck route in the City right now. This is not uncommon, and there is always some occasion where heavy trucks need to move through, but freight and goods movement and emergency vehicle access are a part of the considerations. Things like business-related things (delivery trucks going to the mall) and how those businesses are operated can't be dictated in this plan, but we can identify that these are areas where these activities happen, and there might be better ways for this to be

handled.

Question: Regarding public transportation and buses – The connection to Parksville and

Qualicum bus stops are 1km apart, but there are a lot of people living in those areas,

can this be improved?

Response: The Regional District and BC Transit are responsible for location of stops, routes, and

frequency. The infrastructure itself is handled by the City (type of bus stop/shelter etc.) but if this is flagged in the survey, we are in conversation with Regional District as a part

of this process.

Question: Regarding left turn lanes in the City – are there cameras with facial recognition

systems?

Response: I don't' know off hand. In the UK there are major problems with this software and how it

is used, I'm not aware of how this plays out here. Typically, cameras are just looking for

movement (data processing), and not actually recorded, as far as I know.

Question: You mentioned how this plan will fit in with OCP – I've noticed in my neighbourhood

and others that developers buy land and rezone it for higher density. How does this plan feed into the OCP in regard to increased traffic? Was it considered in the OCP that this would become a safety issue? We can't predict development at the end of this

plan.

Response: The TMP doesn't feed into the OCP as much as it works towards the goals of the OCP.

The TMP assumes the OCP objectives are met, so what do we need to service the trips developed due to this? We may have to go back into the land use plan based on what we find out as a part of the TMP process (a feedback loop between the two plans). The best TMP is a good land use plan. In terms of new legislation, can provide feedback in terms of "based on the OCP, we predict that this is what traffic (etc.) will be like", then

this can inform the next OCP.

Question: Regarding increasing cyclist safety – is this the only topic we want feedback on?

Portugal has amazing bike infrastructure, mostly offroad. Downtown Highway19a, pedestrians and cyclists on the sidewalk create safety issues. Cyclists won't move for a

pedestrian, and this causes safety problems.

Response: This is something we will be exploring how can we do this better? Different problems

lead themselves to different types of design. People will always misbehave – can't do much about this, but we can provide good infrastructure to promote good behaviour. Physical constraints are sometimes in place (we can't have trees, bike lanes, paths, etc.

all in one cross-section everywhere) so how should we best focus our efforts?

Question:

Has there been monitoring of other vehicles on off-street bike trails (such as mobility scooters) to see if this is changing?

Response:

It's mixed, some locations have good data with traffic counts of all types of traffic (by all modes). For more remote/off-street places it is harder to do. There are often many access points, so where your counter is located makes an impact on the data. In the Capital Regional District (South Island), their system is remarkable, so it might be worth looking into how they manage this.

Question:

We use bike lanes quite often, especially in summer. Mobility scooters and e-bikes are used a lot, but not well represented in the slides - is this because of the lack of data? We can speak to this from experience, but not necessarily data as we don't have the

Response:

same data for these modes as we do for traffic counts.

Question:

In slowing traffic down on the highway, there has to be an alternative (such as a ring road) to be able to bring traffic around. Was Jensen originally slated to serve this purpose?

Response:

From a process perspective, we are not specifically saying anything about what we want to do yet. This is a data input learning experience. Once we get to the place where we are determining options, it will be about determining impacts and tradeoffs. Part of the process is identifying the feasibility of projects. For example, the beach side of Highway 19 is dangerous for foot traffic with the number of e-bikes on sidewalks. The whole downtown core may have sidewalk and bike lane issues (and of course parking). It can be tough when there are conflicting priorities – bike lanes? Bike parking? Parking? Driving? It's good to know where priorities are sitting – please supply this on the survey.

Question:

A Question about process – I don't have a sense of how this process is really going to work (you say the TMP is now well underway) How meaningful is the input from consultation going to be? It is murky how this is all going to work between different entities. How meaningful is this process and will it be incorporated? Is there already a TMP agenda in place?

Response:

The work done to date is only a state of play and what things look like now. This conversation today is the first conversation about the future, what we'd like to do or see, or what priorities or right answers are. The Data Collection part of the process is well underway (base mapping, policy review, existing conditions reports). We can't go into this meeting not knowing anything, so we need to do our due diligence to bring to this meeting. We won't be able to capture everything. The TMP is a high-level strategic master plan document, but we will work on what we can within the scope and also note other issues brought up that we can't deal with in the TMP. This helps us to come up with the 'fun stuff' of solving issues and determining what ideas look like when we actually talk about what implementing them might look like, and what the trade-offs are.

Question:

Is this TMP working within a larger framework such as the UN sustainability goals framework?

Response:

I wouldn't say so. Community engagement will inform the decisions as opposed to using a formulaic process. The goal is not to have a generic plan that sits on the shelf, but to be based on the community's needs.

Question:

I appreciate all of the comments on the purpose of the TMP to enable implementation of the OCP, however, the timing of this is inappropriate. The current OCP is very outdated, and we don't have a new one on the books. To develop a TMP to support the implementation of an outdated OCP is a waste of resources. Can you comment back to the City that the OCP needs to be updated in order for a TMP to have relevance?

Response:

(City reply) There isn't one perfect right way, some things will need to be revisited and zoning and OCP changes will have to be rejigged, we hear questions the other way around too (why are we dealing with larger processes when some projects could be worked on now?) There haven't been drastic changes in community expectations since the previous OCP. Densities haven't been changing drastically, these comments may come down to local level. There are important reasons to get some of this done earlier, rather than later, the information gained is still valuable.

(Matt) some things will be true no matter what the OCP says, not necessarily driven by a trigger of x number of people. Some things will take a long time before they are realized, during that time you have an OCP and then that can be wheeled in. An outdated OCP

doesn't stop us from moving forward.

Presentation 3: 4:15pm (~13 attendees)

Question: You used a great analogy of creating a master plan that is accomplished at the time the

next one is developed - where did the last TMP get to?

Response: The context has changed since the previous TMP (since 2016). We are always going to

start from now – there is no obligation to finish what they started as but we are starting from our baseline here today. The previous plan won't necessarily inform what we do

moving forward, we want to see what the community is looking for now.

Question:

Are you working with City plans for development? High-density buildings have gone in over the last few years, with impacts to traffic and parking. What modes of transport are people going to be using? Are we expecting large groups to be using bike lanes? There is a different vibe for Parksville as a beach community versus a City moving towards development

Response:

This is why we do what we do! We are looking to:

- 1. Understand where we are now and how people move around. We take input for people's priorities, and what they'd like to see. We take the traffic now and increase it by the amount the OCP says we can expect. We can look to see how the current system performs to that buildout. That sets the context for future changes. That's why a lot of infrastructure changes are based on development – once you hit a threshold is when you need changes to infrastructure. Development is outside control of what TMP can do, that is more relevant to the Zoning Bylaw and OCP. We have to take cues from land use planning.
- 2. Determine steps forward for the community. You are describing a philosophical shift in the community. This beachfront community previously had the only highway up island through the community, but now that we have the new highway, some people still take the scenic route. This creates two different purposes for the highway running through the community. That's part of the feedback we are looking for (though there are different opinions).

Question: What is the timeline for public input?

Response: December 3rd is the cutoff for the survey portion of the engagement. In the new year we

will be moving toward looking at options for improvements.

Question: Is the survey available online?

Response: Yes! On the Let's Talk Parksville website. There is also a QR code on the sheets by the

door to bring you to the survey.

Question: Some roadways are affected by the Regional District of Nanaimo, such as, Wembley

and Church. There are two current development proposals to increase nearly 200 units

– how do the Regional District plan and Parksville plan fit together?

Response: We don't want to have plans where routes stop at the City boundary. Data pulled from

background growth show an increase in traffic at a regional level. How these impact specific roads is more detailed than what this type of plan will deal with. But generally, what infrastructure developers should pay for, where sidewalks should be etc. can be dealt with (catch-all recommendations laid out in policy) but it wouldn't necessarily be that any RDN property would need to be the same as Parksville property. TMPS do say things about public properties and rights of way. In many places it's not widely known that roads are private or that there is no responsibility to maintain those private roads to City standards etc. TMPs' have some ways to approach these regional issues, though

they should generally be dealt with at the development level.

Question: Is the Regional District of Nanaimo in a similar planning process?

Response: They are currently undertaking a transportation development strategy. We are not

beholden to their planning cycle. Their plans leapfrog through time and aren't necessarily coordinated with City plans. There are always things that change in the timeline of planning documents that we can't foresee (such as Covid), but we do our

best to work in alignment where possible.

Question: Has the City given us their plans for the next 10 years? How many developments will

there be?

Response: Developments currently in process will be considered as a part of the plan. We don't

have the answer for how many developments are planned that are not yet in the queue. Land use maps will be used to look at future maximum buildouts within the current plan, such as planning for road traffic that will come from future densities. We can

recalculate these projections if these things change.

Question: Will changes from the new legislation (announced November 1st) be considered?

Response: Yes, though we are not quite sure exactly what that will look like yet. We are currently

on an "as-it-happens" basis as opposed to one point in time. At the end state of this process, we will look at high-estimate and low-estimate versions of that potential buildout (as things might not get built, there could be a slump in development, etc.) We

understand that things can change along the way.

Question: Will the new plan be less car-centric?

Response: Probably. The transportation industry has moved since the creation of the last TMP.

Generally, the industry is now more accommodating to active transportation and transit

options. This is in response to increasing needs for sustainability and reducing traffic congestion. As consultants – we are necessarily agnostic, analyzing problems, community values, options, and tradeoffs with these options. I have lived in large cities, but these cookie-cutter solutions don't apply everywhere. In some contexts, driving is the best option (it is not realistic to bike everywhere in a rural setting). I am a big believer in context-sensitive plans and being realistic. The City busier than it was, but not busy in the same way that Victoria, Vancouver, or Toronto are. What is the appropriate way to handle changes in traffic through time will be determined at the options phase of this process.

Question:

I was told that the City wants to be less car-centric. But we are a bedroom community for Nanaimo. Some City workers even live in Nanaimo. The automobile is under attack.

Response:

That's not all we are. It is a transportation network, and so we should have options for local streets for kids to ride bikes comfortably. If you are commuting to Nanoose Bay, that should be comfortable too. Less car-centric – previous plans were all about moving cars only, and we have to consider all kinds of movement and trying to find balance. It doesn't mean cars are bad or that walking is best – there has to be a way to find balance. We should still be able to get to Parksville if we can't afford a car. This is all about

providing choice.

Question: Regarding seniors and scooters – I live close to this building (The Forum). The street is

narrow, and seniors take this route by choice rather than Hirst even though it would be

safer. Is there special consideration for the safety of seniors?

Response: Absolutely yes! Every session has had this concern. It is all about finding the right

balance, locations, and infrastructure to get people where they need to go safely.

Question: Regarding Highway 19 going through Parksville – you seem to say that there are 2 ways

to consider it (either part of Parksville's mobility plan, or, as a provincial highway that

we can't do anything about)

Response: Highway 19a is a City road now, since the new highway went in. So yes, this is a part of

the scope and the City has agency in how it is dealt with.

Question: Has any conversation happened about a third crossing of the Englishman River?

Especially for emergency services etc.

Response: We haven't considered anything yet, but this is a good comment to consider as we start

to develop options. This is an important connection.

Question: What is the purpose of moving the curbs halfway into the roads, specifically regarding

Bagshaw Street? These calming measures often make it more dangerous for bikes (I've seen this on Hirst Ave, too) Are these bump-outs a thing the City is big on now? They

seem to be creating a dangerous environment.

Response: Curb bump-outs are done for several reasons (such as increasing parking behind the

curb, decreasing pedestrian crossing distances, etc.) This will be good for us to look at, there is a suite of traffic calming features that can be implemented on any given street. Not all work in all contexts and instances. It may be that this has seen unintended consequences that are worse than the original issue. We can take a look at these things

within this process.

Question: Hirst Ave is designated as a bike route, but there is not enough room for cars and bikes

- has this just been executed poorly?

Response: Safety for cyclists is different in areas where cyclists are expected, as behaviours are

different. This is something that should be considered.

Comment: We have to design conditions to be easily navigable by all, even the bottom 5% to

ensure cyclist safety.

Response: This goes to a shared responsibility of safety on the road – there is a hierarchy of risk

that must be taken into account.

Comment: In the summertime, there are twice as many cars and visitors, they don't have a good

understanding of the network.

Response: Parksville is not unique in seasonal variation of traffic demands. There is a question

about how much to design the City to accommodate this, versus the rest of the time when it's just locals. If we are designing only for tourists would over sign and provide major parking increases, but this would not be appropriate for the off-season. It will be

all about providing a balance between competing needs.

Presentation 4: 5:30pm (~8 attendees)

Question: Does Parksville do any signal coordination right now?

Response: There is synchronization but not full coordination (for example, you may have to wait

between 0-60 seconds for a walk sign crossing). The next phase of work will include

exploring options for true coordination.

Question: How does this plan relate to the previous one? The previous plan ended inconclusively

and wasn't really implemented. Are we revisiting those conclusions?

Response: The background review for this project included this document and other related

documents (Trails Plans, etc.) but this is to move from today's Parksville, starting fresh

from now, so we have not really included previous conclusions.

Question: Can you talk more about the "Green Wave" and how this works in the City now?

Response: Currently there is signal synchronization, whereby enlarge cross buttons are within a

large planning sequence. It is a bit of a crude system right now, there is no synced

signalization.

Question: Regarding peak traffic moving through Parksville, how much of highway traffic is

commuter traffic through the community? Should we use license plate readers to determine this at the entrance and exit to the community and determine what percentage is driving straight through? If we have a lot of through-commuter traffic;

how can we discourage this?

Response: Great question, this is tricky to determine. It is difficult, but possible.

Question: Is the data collected so far (traffic counts, etc.) available to the public?

Response: Not currently, the City will need to discuss this, but is generally not opposed to sharing

data.

Question:

Was data collection done in the summer purposely? This represents the most congested time of year. What did you find? The previous plan's report showed primary deficits were for active modes and didn't show any major concerns. I'm hoping that this new plan shows that data collection confirms there isn't a significant traffic

congestion issue.

For people who have been here a long time, traffic is worse than it was. This doesn't Response:

mean it's bad, just worse than it was. If you have lived in a big city, you've seen what traffic congestion can look like and how it can vary by an hour. When we talk about how good the traffic is this, is relevant to people's experience (for example, I used to be able to park wherever and whenever I wanted.) This is why we need to have a conversation as well as data to capture these experiences, to see if, where, and when people are

experiencing issues.

Question: I have noticed that occasionally someone can't get into a left turn lane. I can see a

potentially dangerous situation. Does data collection pick up on this?

Response: This is called storage length. Often where pain is felt an adjustment is needed (maybe

just a few metres extension, etc.) There are many ways to address this.

Comment: Regarding the Highway - as we develop the downtown core and move towards a 15-

> minute walkable City, there are concerns with walking with kids across the highway from the downtown core across to the park and the beach. We want to see the movement of traffic off the highway to increase safety for pedestrians trying to access

Response: Perfect comment: priority number one – we can try to achieve this! It is good to have a

clear plan which says: "We want to achieve x goal".

Question: What happens after the next engagement?

Response: The next step includes close collaboration with the City. We take all this insight and

> determine priorities and aspirations and provide some ways we can go about doing this. Some of these won't be practical, and some may have legs and we will explore these. We then explore the trade-offs to get an appreciation for the full picture, so that in the next engagement we can say "here's what you said, here's what that means, and are you

okay with that plan and the associated trade-offs?"

Question: What is the survey timeline? What kind of numbers are good? Should I share the

survey with my networks?

The survey closes December 3rd. Yes, please share with your networks! The more the Response:

better! The postal code question on the survey will help show the opinions of community members and people not living in the community, so we can better

interrogate that data. The more data the better to understand the concerns and possible

improvements and benefits.

Question: Some voices can't be heard, particularly for people with multiple barriers. We need to

consider people with accessibility issues, even if they aren't able to access the survey.

Some people do provide direct messages to the City. Organizations will provide feedback Response:

directly. Members of those organizations could also fill out the survey individually, that is one way to get the information. We are trying to have conversations with various

groups and organizations. All of this material will be on Let's Talk Parksville. We do have paper copies of the survey, though it is easier to process the results online.

Question: It is important for people outside of Parksville to have a voice, too. Is this process

coordinating with the Regional District of Nanaimo, and Qualicum Beach?

Response: We do take account of these things. In a perfect world, all plans from outside the City

would line up at the same time. There is no use in putting in a bike path that ends nowhere at the City boundary. We want to make sure we are in contact with RDN and through this process will end up learning more, but this process is based on the TMP for

the City of Parksville.

Question: Are design guidelines going to be recommended?

Response: A bit later in the process (cross sections of streets, what collectors/arterials can look like

etc.) will be done as a part of this.

Question: Recent updates to newer research-based designs are now being critiqued. For

example, from Orange Bridge to downtown on the highway is designed as a highway, but we expect people to drive as if they're driving through a community with 13-foot traffic lanes and expect people to read this as a low-speed road. Can we bring this

contemporary approach in? For example, making narrower lanes.

Response: Yes, we will absolutely be getting into this. I have other current projects that deal with

this (such as 3.3m curb lanes and 3.1m center lanes) and what you can buy with this additional width is incredible, such as sidewalks and bike lanes. People drive to the conditions. Updating the design standards and cross-sections will be a part of this. The recent 10 years in the industry have been a reminder that cities are for people, not

people coming into the City only for work.

Question: Were "levels of service" only collected for downtown? What about commercial and

residential nodes in the Official Community Plan? I was hoping for data in these spots.

Response: The focus was on downtown. From an experiential perspective this is because data from

a lot of other intersections in the City wouldn't tell you very much, you don't learn much from these data sets compared to the cost. The TMP is more about principles rather than specific fixes. We can look to historical data for these issues rather than responding

to specific data sets.

Question: The highway is no longer a Provincial highway, we can utilize this space better. This has

been in previous plans and yet nothing has happened.

Response: I've done enough planning projects that haven't gone anywhere and know the empty

feeling of that. I am very enthusiastic about generating a plan that can get done.

Question: We also want a pleasant experience – I didn't see this specifically in the slides, but I

want to make sure this is kept in mind to increase active transportation and an enjoyable experience (utilizing measures such as street trees, shade, decreased speed,

aesthetic features) to make a pleasant experience.

Response: We love this! It's always about needs, but why can't we have nice things too? It's not just

about being safe; we should be happy too. Engineering is geared towards minimum

design standards, but we can do more than that here.

Question: Are there examples of similar communities that have dealt with this community

highway situation well? Such as Dogwood in Campell River diverting highway traffic

from the middle of the community.

Response: Parksville is unique in its geographical spread, historical highway, and beachfront. There

are elements we can draw from, such as Campbell River's sea walk, or Ambleside in North Vancouver (though not implemented yet). However, the deviation between the highways is much less than in Campbell River, so we wouldn't need a 'Dogwood' in Parksville. We will explore these things in the future modeling phase, determining "what

would we do if we diverted traffic" etc.

Comment: The map showing walking and cycling routes is not accurate – bike lanes are shown

where bike lanes aren't designated, so people park in them. More than half of shown

bike lanes are not actually bike lanes. This should be clarified.

Question: A lot of changes are expensive (such as fully protected bike lanes) and I encourage this

process to come up with cheap and smart ways of improving things, even if it's only in the interim. Even to leave a poor condition of wide highway lanes but changing small things like adding a few bike lanes when the next line painting is scheduled, using planters etc. is valuable. Don't wait for a full buildout before doing anything! We need

cheap interim options.

Response: The project on Mackenzie in Victoria is a good example of this – a phased approach of

full buildout by 2050.

Question: The education component is important too – such as people not following "no right on

red" signage.

Response: Some people will always behave badly. The goal should be clear, well-signed wayfinding,

and consistent intersections so that no one is taken by surprise. Tourists especially get

very caught up in these minor deviations from the norm.

Comment: I have concerns regarding the sidewalks in town. There are constant ups and downs of

sidewalks with driveway dropdowns, and this is very hard for those with mobility

issues.

Comment: Qualicum Beach put in stamped sidewalks, and it is very painful for the elderly to cross

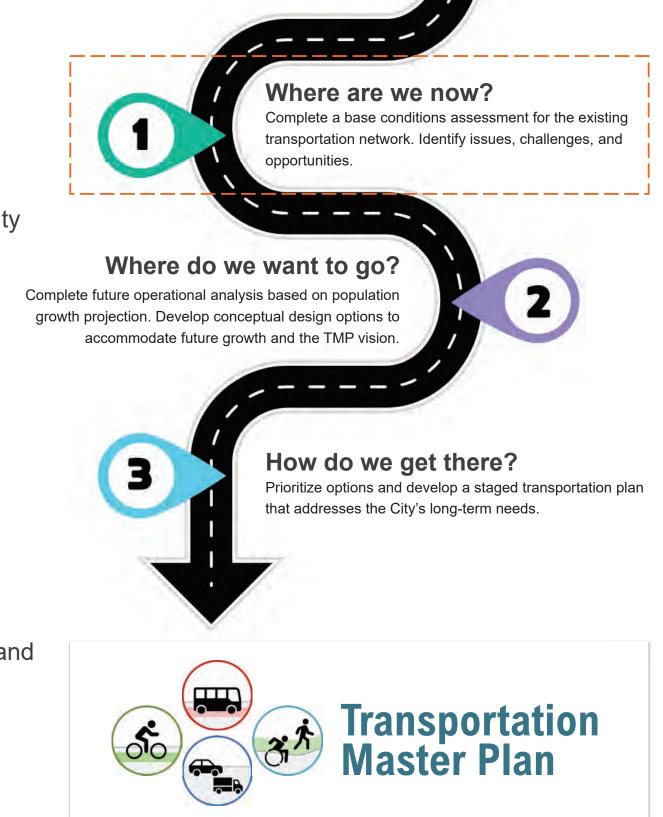
over in a wheelchair. Please consider these types of user experiences in the TMP.

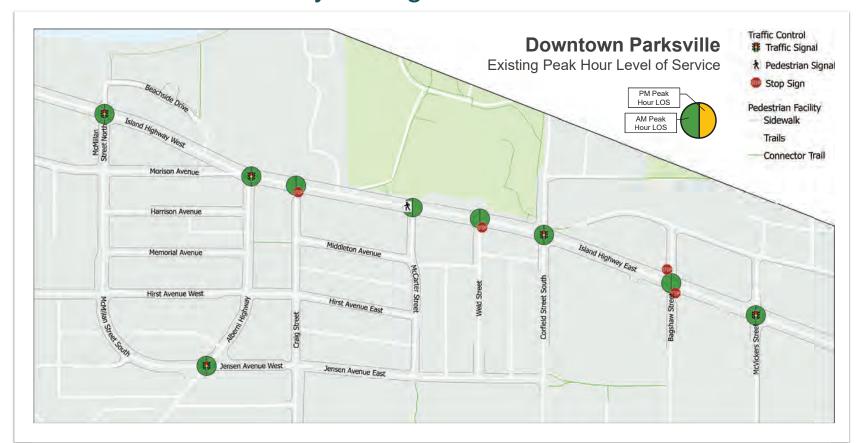
City of Parksville

Transportation Master Plan Public Open House

November 8, 2023 (2-7pm)

Agenda


- Welcome and Introduction
- Overview of Open House Session
- Existing Conditions review for all modes including:
 - Traffic, parking, and goods movement
 - Pedestrians
 - Cyclists
 - Transit
- Important factors to consider (Funding and Safety)
- Q&A


Welcome and Introduction

- Comprehensive Transportation Master Plan (TMP)
- Strategic planning document that supports the Official Community
 Plan in matters relating to transportation and mobility
- The TMP aims to reflect the needs of the community and communicate a plan for implementation that is realistic and effective
- The TMP addresses all modes including:
 - Traffic, parking, and goods movement
 - Pedestrians
 - Cyclists
 - Transit
- This Open House session is an opportunity for YOU to engage and provide your insight on mobility challenges and opportunities
- Please fill out the survey!

Traffic and Signals

Where are we currently seeing the most traffic?

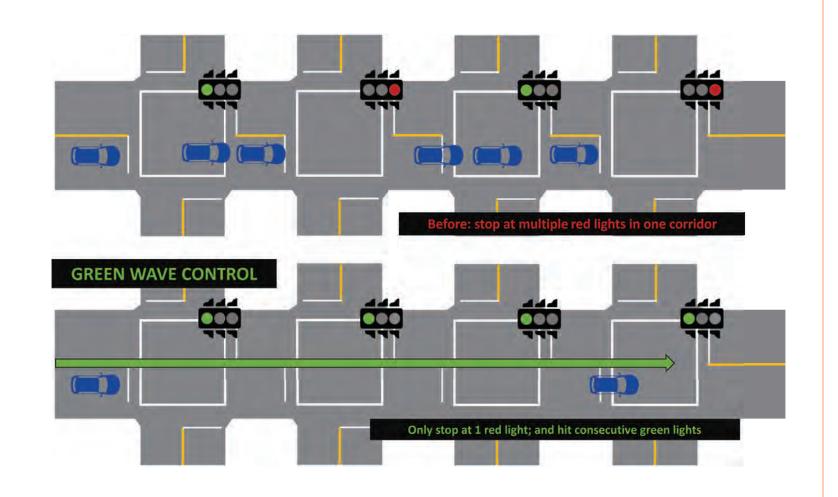
Level of Service Legend and Criteria

Level of Service (LOS) is a quantitative measure used to assess and describe the efficiency of traffic flow on roadways. LOS is determined based on traffic volume, speed, density, and the presence of congestion. LOS is expressed using a letter-based scale, with each letter corresponding to different delay thresholds.

Delay Criteria (sec/veh)											
LOS	Signalized	Unsignalized									
A, B, C	<u><</u> 35	<u><</u> 25									
D	>35-55	>25-35									
E	>55-80	>35-50									
F	> 80	> 50									

Existing Traffic Conditions

- Traffic analysis was completed for the morning (AM) and evening (PM) peak hours; which are the hours with the largest traffic volume, simulating the most congested times of the day.
- For the AM and PM peak hour traffic analysis; all intersections perform at LOS C or better. That is, less than 35sec delay for all movements combined.
- Some movements at stop signs are LOS E
 (50sec of delay) and will be further analyzed to
 see if a signal is warranted.
- Traffic on the downtown Island Highway consists of a mix of through-traffic travelling through the City, and local traffic accessing services and other commercial activities.


Traffic and Signals

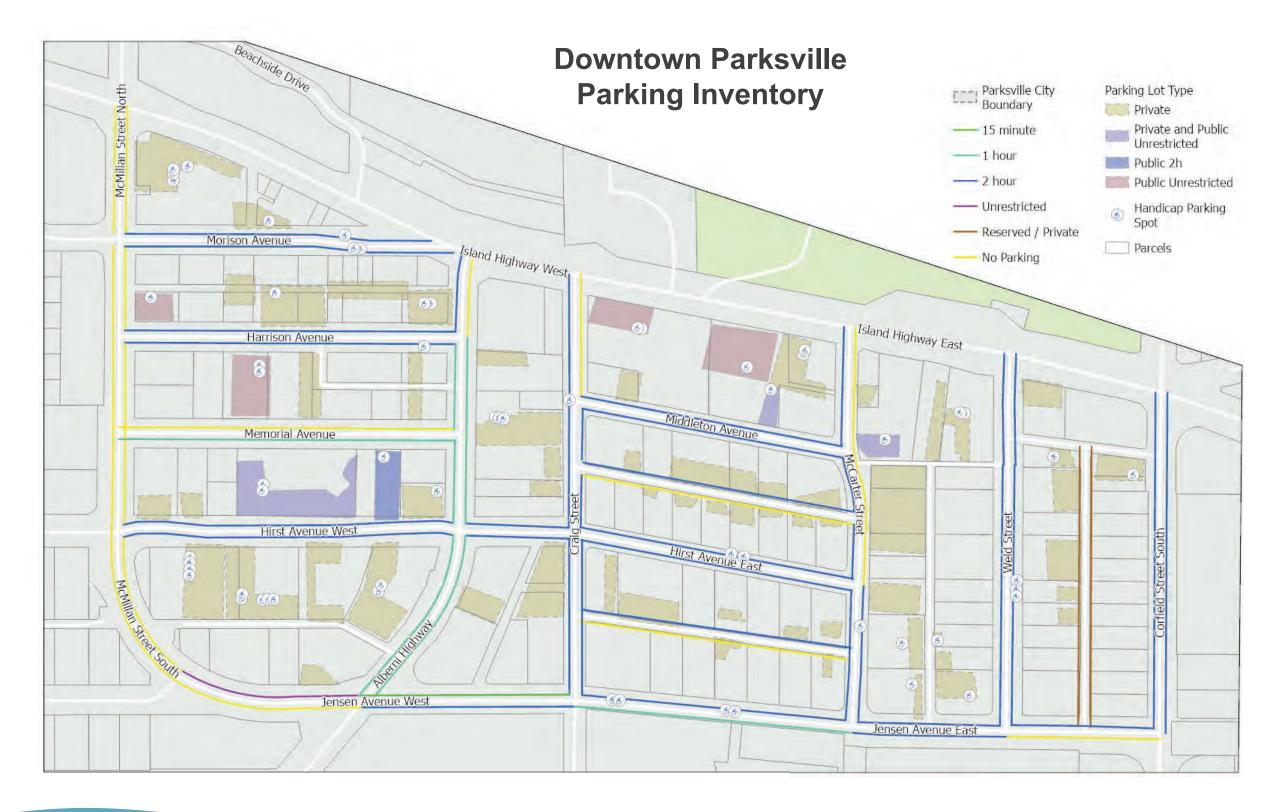
What could be improved?

Island Highway Traffic Operations

Signal Timing Coordination:

- Is a way of optimizing the flow of traffic along a corridor, or a series of interconnected traffic signals.
- Involves adjusting the timing of green, yellow, and red signal phases to create a synchronized flow of traffic.
- The "green wave" refers to a situation in which a series
 of traffic signals are coordinated, so that when a vehicle
 travels at a specific, consistent speed, it encounters a
 green light at each signal along its path. This
 synchronized timing minimizes stops and delays for
 vehicles traveling within the coordinated section of the
 corridor.
- One thing that makes achieving a "green wave" difficult is the need to serve movements travelling across the roadway and in particular, pedestrian movements. Understanding the community's priorities helps us better balance and implement targeted improvements, creating a better overall transportation network for residents.

Can you think of other improvements to traffic and signals you would like to see?



Parking

Parking

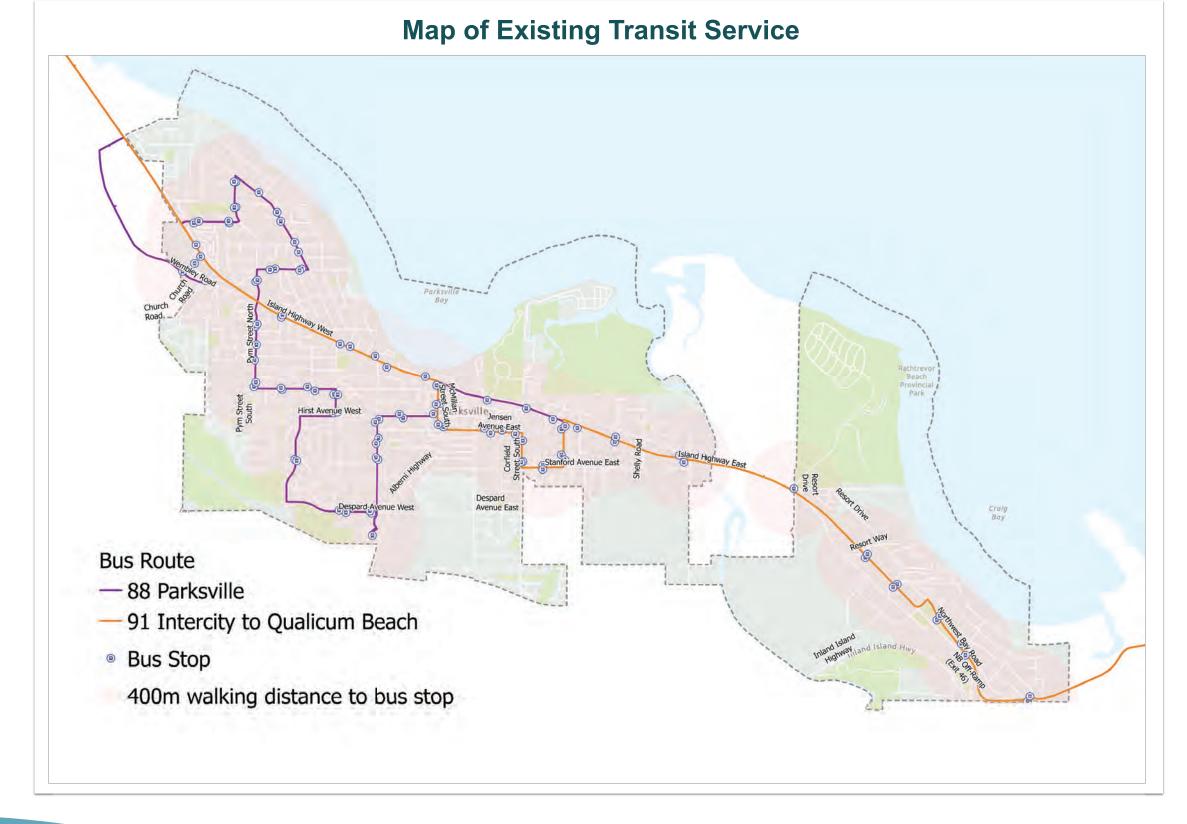
Accessible Stall Inventory

- Almost all public parking lots have at least 1 accessible stall.
- Accessible stalls are generally located with the closest proximity to storefronts.
- Not all private parking lots have dedicated accessible stalls.
- Limited on-street dedicated accessible spots are available and some of these are not fully-accessible but do provide priority parking to reduce walk distances to amenities and services

On-street accessible parking stall

What could be improved?

- Are you generally able to find parking within a reasonable walking distance from your destination?
- Are you generally able to find an accessible parking spot near your destination storefront?
- Is regulatory signage (e.g., 1-hour vs 2-hour) appropriate and clear?



Transit

Operated by BC Transit, The Regional District of Nanaimo

Operated by BC Transit, The Regional District of Nanaimo

Existing Transit Service

88 - Parkville

- · Low frequency route servicing west side of Parksville
- Buses every 50min 1hour during peak hours

91- Intercity to Qualicum Beach/Nanaimo

- Low frequency intercity route
- Peak hour service connecting to the #25 ferry shuttle

Transit Accessibility

~10,000 people live within 400m of an 88-route bus stop

Future Planned Service

- The Regional District of Nanaimo has plans to replace the 88-Parksville bus route with two new routes servicing similar catchments, with the addition of new areas in South Parksville.
- There are also plans to create a separate 35 Nanoose Bay route operating between Parksville Exchange and a new connection point in the vicinity of Highway 19 and Morello Road.

Transit Amenities

Some bus stops have shelters, benches, or no amenities.

Bus Stop

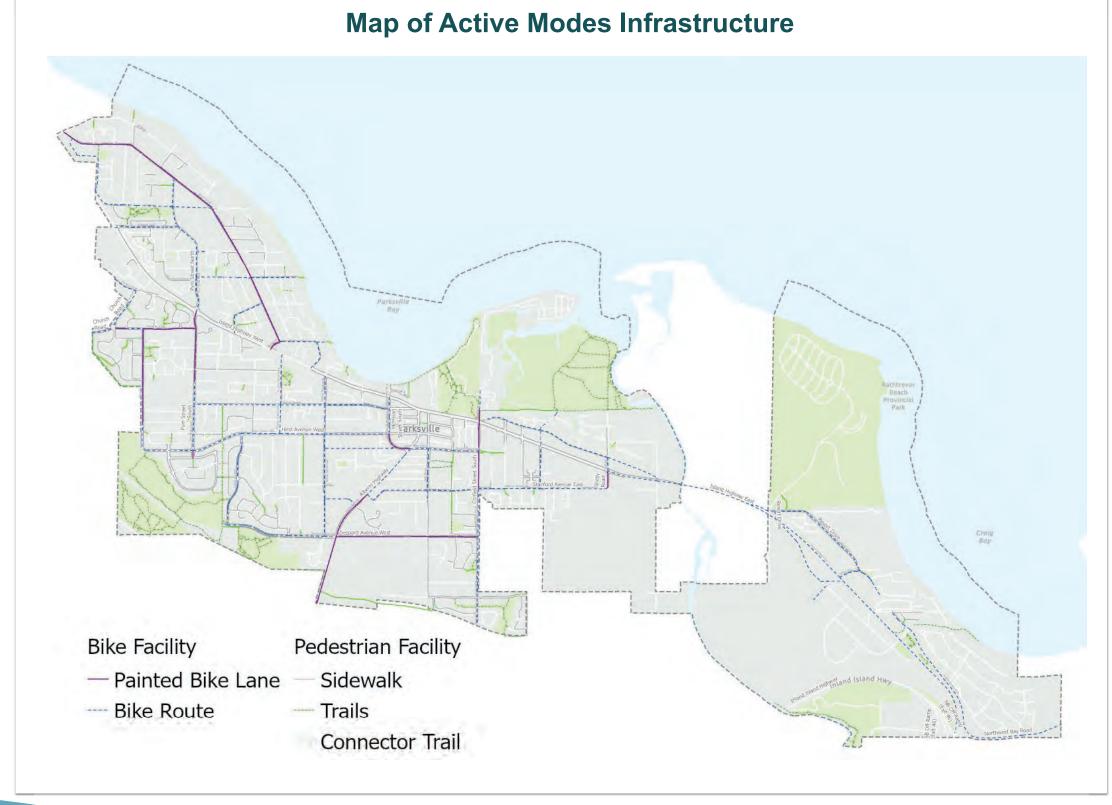
With Bench

With Shelter

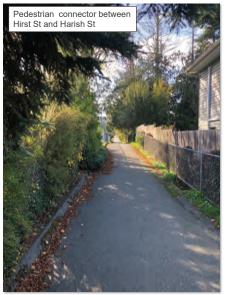
Gaps in the Network

Are there any areas that could benefit from infrastructure to improve transit accessibility?

Are there any bus stops that are lacking amenities?



Active Mobility



Active Mobility

Pedestrian Infrastructure

- Good sidewalk coverage in the downtown
- Limited sidewalk coverage in residential neighbourhoods
- Several trail networks along the Beachfront and provincial parks
- Maple Glen linear walkway is a key north-south trail route

Bicycle Infrastructure

- Network of local roads that cyclists can use shown as "bike routes"
- Some roads have designated bike lanes, or wide shoulders, or cyclists must share the road with vehicles
- Roads are generally flat

Gaps in the Network

- Would separated, All Ages and Abilities facilities encourage more cycling?
- Are painted bike lanes sufficient?
- Would cyclist push buttons at traffic signals be beneficial?

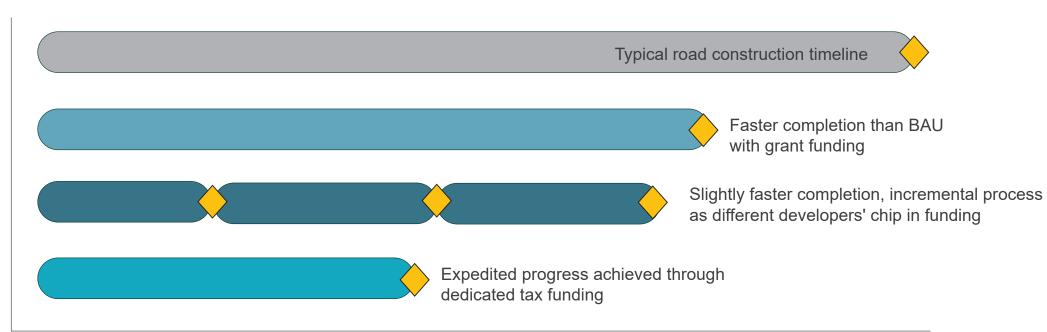
- Are there sufficient sidewalks in residential areas?
- Other gaps, issues, or opportunities?

Funding

The current model for funding transportation infrastructure improvements and enhancements typically revolves around delivering an upgrade as-and-when repair and maintenance activities are planned.

Grants are available from the provincial government for projects that are funding-ready, and these need to be established in advance to take advantage of the application process (the TMP will recommend projects that are funding-eligible).

In some cases, where development activities are occurring, there can be additional funding for new or improved facilities, but these are sporadic, unevenly distributed, and tied to specific developments.


Alternatively, specific taxes or other revenue sources can be used to expedite project delivery.

BAU – Build as You Upgrade/Maintain Roads:

Provincial Grant Funding:

Developer Contributions:

Dedicated Tax Funding:

Project Duration (Years)

Safety

The City has a vision for a safe, equitable and efficient transportation network that is accessible to all. Achieving this vision is a shared responsibility that includes good street design, effective traffic management, safe and sensible road speeds, and transportation education that fosters a culture of responsible and respectful road use.

Automobile Safety

Are there any areas lacking appropriate signage or with other safety concerns?

Pedestrian Safety

Are there adequate pedestrian crossings in high traffic areas?

Would additional sidewalk coverage improve safety?

Do the posted vehicle speeds make walking safe in all traffic areas?

Cyclist Safety

What would make sharing the road safer for cyclists?

Q&A and Next Steps

Any general questions about the study process?

Is the process clear?

Any specific questions about elements we may investigate further?

Are there specific areas that are important to you?

What are your main priorities for the TMP?

Next Steps:

- We'll be preparing a "What We Heard" report of this event
- Following the completion of the Existing Conditions phase, we'll be starting to explore future conditions and how growth will impact operations
- A subsequent Public Engagement will be planned for early 2024

Appendix B

Traffic Operations Analysis

				E	Base (Condi	itions								
Intersection	Peak	Attribute	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Overall
	eet Appro			Hwy 19	A A		Hwy 19 <i>A</i>		McMi	illan St	North	McM	illan St I	North	
	Traffic (vph)		15	652 69		31	371	7	37	1	38	9	10	10	
		v/c Ratio	0.03	0.34		0.09		19	0.19	-	.16		0.13		
	AM	Total Delay	6.4	6.8		10.7	7.9		24.9	-	'.8		16.7		8.1
	7	LOS	А	-	A	В	A		С	Α		В			A
1: McMillan St &		95%Q(m)	3.3	43.4		8.7	30.1		10.5	5.6		7.5			
Highway 19A		Traffic (vph)	27	759	134	109	736	32	174	6	84	26	5	18	
	PM	v/c Ratio	0.07	0.	.48	0.39	0.	41	0.71	0.	.26		0.18		
		Total Delay	7.1	9).4	19.6	12	2.7	38.7	6.8		15.7			13.8
		LOS	Α	А		В		3	D	,	A		В		В
		95%Q(m)	4.9	5	7.6	30.9	62	2.2	39.8	8.5			10.4		
Street Approach:		. ,	Hwy 19A		Hwy 19A		Alberni Hwy								
		Traffic (vph)		679	33	94	372		47		98				
		v/c Ratio		0.	.39	0.25	0.18		0.23		0.37				
	AM	Total Delay			0.5	5.7	4		30.3		8.9				8.9
		LOS		-	В	Α	Α		С		А				A
2: Alberni Hwy &		95%Q(m)		-	7.8	11.4	18.7		13.5		9				
Highway 19A		Traffic (vph)		857	118	187	746		130		216				
	PM	v/c Ratio		0.	.62	0.57	0.33		0.45		0.5				
		Total Delay		16	6.5	14.1	6.3		31.6		7.4				13.1
		LOS		В		В	Α		С		Α				В
		95%Q(m)		88	8.2	22.9	37.5		31.4		15.6				
Stre	eet Appro	ach:		Hwy 19	A		Hwy 19 <i>A</i>	4		Craig S	t				
		Traffic (vph)		703	70	32	466		1		1				
		v/c Ratio		0.53		0.06			0.02		0.02				
	AM	Total Delay		0		2.4			16.8		16.8				0.4
		LOS		А		А			С		С				А
3: Craig St &		95%Q(m)		0		1.4			0.4		0.4				
Highway 19A		Traffic (vph)		979	116	50	968		0		3				
		v/c Ratio		0.	.68	0.	12	,			0.02				
	PM	Total Delay			0		.8				26.9				0.7
		LOS		А		,	4		D		D				А
		95%Q(m)		0		3	.1		0.6	0.6					
Stre	eet Appro	ach:	ı	lwy 19A			Hwy 19 <i>A</i>	4	M	cCarter	St				
		Traffic (vph)		707	14	33	480		6		40				
		v/c Ratio		0).3	0.08	0.22		0.15		0.15				
	AM	Total Delay		5	5.6	7.5	5.3		9.9		9.9				5.7
4: McCarter St &		LOS			A	Α	Α		Α		Α				А
Highway 19A		95%Q(m)		49	9.7	7.5	31.2		6.3		6.3				
		Traffic (vph)		949	29	44	996		12		110				
		v/c Ratio		0.	.51	0.19	0.54		0.37		0.37				
	PM	Total Delay		12	2.6	12.9	13.1		12.1		12.1				12.8
		LOS			В	В	В		В		В				В
		95%Q(m)			37	11.9	90.8		10.9		10.9				
Stre	eet Appro	ach:		Hwy 19	Α		Hwy 19.	A		Weld S	t				
		Traffic (vph)	0	713	24	13	511	0	2	0	7	0	0	0	
5: Weld St &		v/c Ratio		0	.33	0.02	0.19		0.03						
Highway 19A	AM	Total Delay			0	9.5	0		11.5						0.2
J ,		LOS			Α	Α	А		В						Α
		95%Q(m)		1	0	0.5	0		0.8		1				

		Traffic (vph)	0	1058	29	12	103	0	1	0	20	0	0	0	
		v/c Ratio		0.45		0.02	9 0.32		0.03						
	PM	Total Delay		0		10.6	0		10						0.2
		LOS		Α		В	A		A						A
		95%Q(m)		0		0.4	0		0.8						,,
Str	eet Approa	. ,		Hwy 19A		-	Hwy 19A			orfield \$	St	С	orfield \$	St	
		Traffic (vph)	96	596	39	71	460 58		43	36 63				21	
		v/c Ratio	0.22	0.3		0.2	0.3		0.19	0.4		0.14	0.11	0.08	
	AM	Total Delay	9.3	15		9.5	15		24	18.1		22.7	30.4	0.4	15.2
		LOS	Α	В		Α	В		С	В		С	С	Α	В
6: Corfield St &		95%Q(m)	18.7	70		14.3	54.6		10.4	14.5		7.7	7.8	0	
Highway 19A		Traffic (vph)	137	791 86		107	765 136		117	38 177		106	37	122	
		v/c Ratio	0.47	0.58		0.35	0.64		0.39	0.58		0.55	0.15	0.4	
	PM	Total Delay	16.2	22.1		14	23.9		24.2	12.1		30	27.9	7.3	21.0
		LOS	В	C		В	С		С	В		С	С	Α	С
		95%Q(m)	24.4	105	5.8	19.6	110.4		23.3	19		21.2	11.6	8.8	
Stre	eet Approa	ach:		Hwy 19A		ı	Hwy 19A		Ва	Bagshaw St		Ва	agshaw St		
		Traffic (vph)	17	605	16	43	555	14	13	0	25	1	0	14	
		v/c Ratio	0.02	0.2	25	0.05	0.2	26	0.07	0.0	0.04 0		0.0	02	
	AM	Total Delay	8.9	0)	8.9	C)	21.3	9.	.7	21.1	9.	.8	1
		LOS	Α	Α	١	Α	А		С	А		С	А		Α
7: Bagshaw St &		95%Q(m)	0.4	0)	1.3	C)	1.6	0.	.9	0.1	0.	.5	
Highway 19A	PM	Traffic (vph)	31	1038	57	73	990	6	8	2	94	2	0	27	
		v/c Ratio	0.04	0.4	14	0.11	0.	4	0.08	0.	18	0.02	0.04		
		Total Delay	10	0 0		11.2	0		36.7	11.7		39.9	9.8		1.4
		LOS	Α	A		В	Α		Е	В		E	А		Α
		95%Q(m)	1.1	0		2.9	0		2	5.1		0.4 1		1	
Stre	eet Approa	ich:		Hwy 19A			Hwy 19A			Vickers			Vickers		
	AM	Traffic (vph)	7	583	33	19	564 7		36	10 39		5	7 12		
		v/c Ratio	0.02	0.34		0.06	0.35		0.14 0.15		0.02	-			
		Total Delay		8.7				9		6.1					
		-	9.3			9.6			12.7			11.2	7.		8.9
8: McVickers St		LOS	Α	Д	١	Α	A	١	В	A	A	В	P	A	8.9 A
& Highway 10A		LOS 95%Q(m)	A 2.6	A 41	.6	A 5.2	A 40	.4	B 7.3	5.	.5	B 2	3.	A .6	
& Highway 19A		LOS 95%Q(m) Traffic (vph)	A 2.6 29	41 1049	.6 55	A 5.2 38	40 963	.4	B 7.3 68	5.	A .5 44	B 2 26	3. 17	6 46	
& Highway 19A	DM	LOS 95%Q(m) Traffic (vph) v/c Ratio	A 2.6 29 0.11	41 1049 0.5	.6 55	A 5.2 38 0.19	40 963 0.4	.4 23	B 7.3 68 0.28	5. 17	A .5 .44 .19	B 2 26 0.11	3. 17	6 46 2	A
& Highway 19A	PM	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay	A 2.6 29 0.11 9.1	41 1049 0.5	.6 55 56	A 5.2 38 0.19 11.3	963 0.4	.4 23 46 9	B 7.3 68 0.28 20	5. 17 0.	44 119 2.6	B 2 26 0.11 17.8	3. 17 0.	6 46 2 7	A 10.1
& Highway 19A	PM	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS	A 2.6 29 0.11 9.1 A	41 1049 0.5	.6 55 56 0	A 5.2 38 0.19 11.3 B	963 0.4 8.	.4 23 46 9	B 7.3 68 0.28 20 C	5. 17 0. 12	44 19 2.6	B 2 26 0.11 17.8 B	3. 17 0. 9.	46 2 .7	A
		LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m)	A 2.6 29 0.11 9.1 A 7.3	41 1049 0.5 10 E	.6 55 56 0 3	A 5.2 38 0.19 11.3 B 9.6	963 0.4 8.	.4 23 46 9	B 7.3 68 0.28 20 C 15.6	5. 17 0. 12 E	44 19 2.6 3	B 2 26 0.11 17.8 B 7.5	3. 17 0. 9.	46 46 2 7	A 10.1
	PM eet Approa	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m)	A 2.6 29 0.11 9.1 A 7.3	41 1049 0.5 10 E 90	.6 55 56 0 3 .5	A 5.2 38 0.19 11.3 B 9.6	963 0.4 8. 8. 68	.4 23 46 9	B 7.3 68 0.28 20 C 15.6	5. 17 0.: 12 E 10	44 119 2.6 3 0.8	B 2 26 0.11 17.8 B 7.5 All	3. 17 0. 9. 4 8. berni H	66 46 22 77 A 77 wy	A 10.1
		LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph)	A 2.6 29 0.11 9.1 A 7.3 Je	41 1049 0.5 10 E 90 ensen Av	.6 55 56 00 385 70	A 5.2 38 0.19 11.3 B 9.6 Je 36	963 0.4 8. 8. 68 ensen Av	.4 23 46 9 .2 .2	B 7.3 68 0.28 20 C 15.6 All	5 17 0. 12 E 10 Derni Hv	44 19 2.6 3 0.8 wy	B 2 26 0.11 17.8 B 7.5 All 5	33. 17 0. 9. 4 8. berni Hv	6 46 2	A 10.1
	eet Approa	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph) v/c Ratio	A 2.6 29 0.11 9.1 A 7.3 Je 7 0.02	A41 1049 0.5 10 E 90 ensen Av 74 0.16	.6 55 56 0 0 35 ve 70 0.16	A 5.2 38 0.19 11.3 B 9.6 Je 36 0.11	963 0.4 8. 8. 68 8nsen Av 68	.4 23 46 9 2 /e 19 0.05	B 7.3 68 0.28 20 C 15.6 Alt 87 0.61	5. 17 0. 12 E 10 0erni Hv 150 0.0	5 44 19 2.6 3 0.8 wy 54	B 2 26 0.11 17.8 B 7.5 All 5 0.61	3. 17 0. 9. 4 8. berni Hv 89 0.0	6 46 2 2 7 A 7 wy 6 6 61	10.1 B
		LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph) v/c Ratio Total Delay	A 2.6 29 0.11 9.1 A 7.3 Je 7 0.02 10.3	A41 1049 0.5 10 90 ensen Av 74 0.16 10.5	.6 55 56 0 3 .5 70 0.16 4.4	A 5.2 38 0.19 11.3 B 9.6 Je 36 0.11 10.6	963 0.4 8. 8. 68 ensen Av 68 0.16	.4 23 46 92 //e 19 0.05 2.2	B 7.3 68 0.28 20 C 15.6 Altt 87 0.61 7.9	5. 17 0. 12 E 10 Derni H 150 0.6	5 44 19 6 3 8 wy 54 61	B 2 26 0.11 17.8 B 7.5 All 5 0.61 7.6	3. 17 0. 9. 4 8. berni H 89 0.6	6 46 2 7 A 7 wy 6 6 61 1	A 10.1 B 7.7
Stre	eet Approa	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph) v/c Ratio Total Delay	A 2.6 29 0.11 9.1 A 7.3 Je 7 0.02 10.3 B	A41 1049 0.5 10 10 10 10 10 10 10 10 10 10 10 10 10	.6. 55 56 00 3 .5. 5 ve 70 0.16 4.4 A	A 5.2 38 0.19 11.3 B 9.6 Je 36 0.11 10.6 B	963 0.4 8. 8. 68 ensen A 68 0.16 10.5 B	.4 23 46 9 .2 .2 /e 19 0.05 2.2 A	B 7.3 68 0.28 20 C 15.6 All 87 0.61 7.9	5. 17 0 12 E 10 150 0 6.	A 19 2.6 3 3 3 5 4 6 1 9 4 A	B 2 26 0.11 17.8 B 7.5 All 5 0.61 7.6 A	99 48 89 0.4	46 46 2 77 A 7	10.1 B
	eet Approa	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m)	A 2.6 29 0.11 9.1 A 7.3 Je 7 0.02 10.3 B 2.5	A41 1049 0.5 10 90 ensen Av 74 0.16 10.5	70 0.16 4.4 A 6.1	A 5.2 38 0.19 11.3 B 9.6 Je 36 0.11 10.6 B 7.3	963 0.4 8. 8. 68 ensen Av 68 0.16	.4 23 46 92 //e 19 0.05 2.2	B 7.3 68 0.28 20 C 15.6 Alt 87 0.61 7.9 A	17 0. 12 E 10 Derni Hv 150 0.4	5 44 19 6 3 8 wy 54 61	B 2 26 0.11 17.8 B 7.5 All 5 0.61 7.6 A 1.6	99 48 89 0.0	46 46 2 77 A 77 My 6 6 6 1 1 A 7 . 5	A 10.1 B 7.7
Stre 9: Alberni Hwy &	eet Approa	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph) v/c Ratio Total Delay	A 2.6 29 0.11 9.1 A 7.3 Je 7 0.02 10.3 B	A1 1049 0.5 E 90 PISEN AV 0.16 10.5 B 12.5	.6. 55 56 00 3 .5. 5 ve 70 0.16 4.4 A	A 5.2 38 0.19 11.3 B 9.6 Je 36 0.11 10.6 B	963 0.4 8. 8. 68 ensen Av 68 0.16 10.5 B	.4 23 46 9 .2 /e 19 0.05 2.2 A 1.3	B 7.3 68 0.28 20 C 15.6 All 87 0.61 7.9	5. 17 0 12 E 10 150 0 6.	55 44 19 2.6 3 0.8 wy 54 61 9 A	B 2 26 0.11 17.8 B 7.5 All 5 0.61 7.6 A	99 48 89 0.4	46 46 2	A 10.1 B 7.7
Stre 9: Alberni Hwy &	eet Approa	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) Traffic (vph) Traffic (vph)	A 2.6 29 0.11 9.1 A 7.3 Je 7 0.02 10.3 B 2.5 10	A1 1049 0.5 11 1049 90 11 1049 90 11 1049 90 11 105 8 112.5 84	.6 55 66 00 35 70 0.16 4.4 A 6.1 122	A 5.2 38 0.19 11.3 B 9.6 Je 36 0.11 10.6 B 7.3 131	963 0.4 8. 8. 68 68 0.16 10.5 B 11.4	.4 23 46 92 //e 19 0.05 2.2 A 1.3 66	B 7.3 68 0.28 20 C 15.6 Alt 87 0.61 7.9 A 11.8	17 0 12 E 10 Oct 15	55 44 19 2.6 3 0.8 wy 54 61 9 A	B 2 26 0.11 17.8 B 7.5 Al 5 0.61 7.6 A 1.6 14	89 0.0 7.2 11 251	46 46 2	A 10.1 B 7.7
Stre 9: Alberni Hwy &	eet Approa	LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) ach: Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) Traffic (vph) v/c Ratio Total Delay LOS 95%Q(m) Traffic (vph) v/c Ratio	A 2.6 29 0.11 9.1 A 7.3 Je 7 0.02 10.3 B 2.5 10 0.04	A1 1049 0.5 10 1049 0.5 10 1049 0.5 10 1049 0.5 10 1049 0.5 1049 0.16 10.5 B 12.5 84 0.19	.6 55 66 00 3 .5 70 0.16 4.4 A 6.1 122 0.27	A 5.2 38 0.19 11.3 B 9.6 Je 36 0.11 10.6 B 7.3 131 0.42	963 0.4 8. 8. 68 0.16 10.5 B 11.4 190 0.42	.4 23 46 9 .2 .2 .2 .2 .2 .2 .2 .4 .1.3 .66 .0.16	B 7.3 68 0.28 20 C 15.6 Alt 87 0.61 7.9 A 11.8 57	17 0 12 E 10 10 10 10 10 10 10 10 10 10 10 10 10	55 44 119 2.66 33 3.88 wy 54 661 9 40 57	B 2 26 0.11 17.8 B 7.5 All 5 0.61 7.6 A 1.6 14 0.05	89 0.4 89 0.4 89 0.4 11 251	6 46 2	7.7 A

Contact
Matt Browning, P.Eng., Project Manager
236-317-3077
mbrowning@mcelhanney.com

